請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26486
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建源 | |
dc.contributor.author | Ying-Rong Chang | en |
dc.contributor.author | 張殷榕 | zh_TW |
dc.date.accessioned | 2021-06-08T07:12:07Z | - |
dc.date.copyright | 2008-08-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | 孫星衍、孫馮翼輯:神農本草經,自由出版社,1988
王關林、方宏筠 (1998) 植物基因工程原理與技術。北京科學出版社。 何立巍等 (2005) 中醫藥信息年第22 卷第5 期 中藥大辭典 / 江蘇新醫學院編, (1977-1979) 劉懷德 等 (1995) 菘藍特性及栽培措施的研究 張潤珍,張玉文 (2000), 中草藥, 2000 年第31 卷第6 期 鄭劍玲,王美惠,楊秀珍,等 (2003) 大青葉和板藍根提取物的抑菌作用研究[J ] . 中國微生態學雜誌,2003. 2 (15) :18. 劉盛,陳萬生,喬傳卓,等 (2000) 不同種質板藍根和大青葉的抗甲型流感病毒作用[J] 第二軍醫大學學報,2000, 21(3): 204 吳曉雲 ( 1995) 中藥板藍根中的生物活性物質[J ]1 國外醫學———植物藥分冊,1995 ,10 (5) :218. 劉雲海,劉彥斌 ( 1994) 不同產地板藍根抗內毒素作用比較[J ]1 中國中藥雜誌,1994 ,19 (2) :88. 衛琮玲、閆杏蓮 (2000) 板藍根的抗炎作用[J ]1 開封醫學專報,2000 ,19 (4) :53. 鄭虎占 (1997) 中藥現代研究與應用(第一卷) [M]1 北京:學苑出版社,1997 :10. 蘇維文、高楠斌 (1994)利用植物細胞培養生產二級代謝物。生物產業 1(1):1-13 雷黎明,潘清平 (2007) 時珍國醫國藥, 2007年第18卷第10期 蔡富全 (2006) 爵床科植物馬藍之化學成分分離與十字花科菘藍植物之鑑別研究 國立中興大學化學系碩士論文 劉柏林(1986) 青黛中靛藍與靛玉紅直接比色測定法. 中草藥, 1986, 17 (4) 19頁 馬麗 (2007)海峽學報 第19卷第12 期 黃文理、劉麗飛 (1998) 植物細胞培養過程中碳水化合物之代謝。科學農業 46:227-235 蔡國琴、李國珍、葉和春 (1995) Ri質粒轉化的青蒿發根培養及青蒿素的生物合成。生物工程學報 11:315-320 Anderson A, Moore L (1979) Host specificity in the genus Agrobacterium. Phytopathology, 69:pp. 320-323. Bakkali AT, Jaziri M, Foriers A, Vanderheyden Y, Vanhaelen N, Homes J(1997) Lawsone accumulation in normal and transformed cultures of henna, Lawsonia inermis. Plant Cell, Tissue Organ Cult., 51: pp.83-87. Bieleski RL, Ferguson IB (1983) Physiology and metabolism of phosphate and its compounds. In:Lauchli A, Bieleski RL, eds. Inorganic Plant Nutrition. Berlin: Springer, pp.422-449 Cardarelli M, Spano L, Mariotti D, Mauro L, van Sluys MA, Costantino P(1987) The role of auxin in hairy root induction. Mol Gen Genet, 208: pp.457-463. Christey MC(2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell. Dev. Biol., 37: pp. 687-700. Contin A, Heijden R, Hoopen HJG, Verpoorte R (1998) The inoculum size triggers typtamine or secologanin biosynthesis in Catharanthus roseus cell culture. Plant Sci., 139: pp. 205-211. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Ann. Rev. Plant Physiol. Plant Mol. Biol., 41: pp. 339-367. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry., 28: pp.350-356. Dougal DK (1980) Nutrition and metabolism. In: Staba EJ ed. Plant Tissue Culture as a Source of Biochemicals. Florida: CRC Press, pp. 21-58 Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J. Bacteriol., 161: pp.850-860. Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root culture. Trends Biotechnol., 5: pp.64-69. Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Whithehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep. 10: 111-114 Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews, 67(1): pp.16-37. Hahn MG, Albershein P (1978) Host-pathogen interactions. XIV. Isolation and partial characterization of elicitor from yeast extract. Plant Physiol., 62:pp.107-111 Hector EJ, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Tibtech., 5: pp.64-68. Heyon KJI, Yoo YJE (2002) Optimization of SOD biosynthesis by controlling sucrose concentration in the culture of carrot hairy root. J. Microbiol. Biotechnol., 12: pp. 617-621. Huang WZ, Hsiao AI (1987) Factors affecting seed dormancy and germination of Paspalum distichum.Weed Sci., 27: pp.405-415. Huang WZ, Hsiao AI (1988) Factors affecting seed dormancy and germination of Johnsongrass, Sorghum halepense. Weed Sci., 27: pp.1-12. Huffman GA, White FF, Gordon MP, Nester EW (1984)Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J. Bacteriol., 157: pp.269-276. Jie Shi, Han-Ming Shen(2008) Critical role of Bid and Bax in indirubin-3’-monoxime-induced apoptosis in human cancer cells. Biochem Pharmacol., 75(9): pp.1729-42 Jin H, Jia JF, Hao JG (2003) Protoplasts from Agrobacterium rhizogenes-transformed cell line of Medicago sativa L. regenerated to hairy roots. In Vitro Cell. Dev. Biol. Plant, 39: pp.208-211. Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J.(1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol. Gen. Genet., 206: 387-392. Kadir, A. A. (1998) Drugs from plants. In: Bruce, A. and J. W. Palfreyman (eds.) Forest Products Biotechnology. Great British, pp.209-234 Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna.Plant Cell Rep., 5: pp.239-242. Kalogeraki VS, Winans SC (1998) Wound-released chemical signals may elicit multiple responses from an Agrobacterium tumefaciens strain containing an octopine-type Ti plasmid. J. Bacteriol., 180: pp.5660-5667. Kim SY, Datta SK, Mercado BL (1990) The effect of chemical and treatments on germination of Commelina benghalensis L. aerial seeds.Weed Res., 30: pp.109-116. Kintzios S. (2003) Genetic transformation of Pueraria phaseoloids with Agrobacterium rhizogenes and puerarin production in hairy roots. Plant Cell Rep., 21: 1103-1107. Liu S, Zhong JJ(1996) Effects of potassium ion on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of Panax ginseng. J.Biotechnol. 52: pp.121-126 Liu Z, Wang YC, Ouyang F, Ye HC, Li GF(1997) Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol. Lett.19: pp.927-929 Loopstra CA, Stomp AM, Sederoff RR (1990) Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol. Biol., 15: pp.1-9. Morard P (1995) Les cultures vegetales hors sul. Publications Agricoles,Agen France, pp. 155-205. Mukudan U, Hjortso MA (1991) Growth and thiophene accumulation by hairy root cultures of Tagetus patula in media of varying initial pH. Plant Cell Rep. 9: pp.627-630 McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult., 34: pp.53-62 Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes-genes in the formation of hairy roots. Physiol. Plantarum, 100: pp.463-473. Ozeki Y, Komamine A (1985) Effects of inoculum density, zeatin and sucrose on anthocyanin accumulation in a carrot suspension culture. 107 Plant Cell Tissue Organ Cult., 5: pp.45-53. Park SU, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholizia californica Cham., root cultures. J. Exp. Bot., 347: pp.1005-1016. Park WH, Cho YH, Jung CW, Park JO, Kim K, Im YH, Lee MH, Kang WK, Park K (2003) Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cycle arrest or apoptosis. Biophys. Res. Commun., 300: pp.230-235. Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit. Rev. Plant Sci., 10: pp.387-421. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem., 37: pp.91-102. Rothe G, Garske U, Birgit D (2001) Calystegines in root culture of Atropa belladonna respond to sucrose, not to elicitation. Plant Sci., 160: pp.1043-1053. Saito K, Yamazaki M, Murakoshi I (1992) Transgenic medicinal plants:Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J. Nat. Prod., 55: 149-162. Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J., 7: pp.2621-2629. Senon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloid. Planta Med., 68: pp.859-868. Sevon N, Drager B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Reports, 16: pp.605-611 Shanks JV, Morgan J(1999) Plant ‘hairy root’culture. Current Opinion in Biotechnology, 10: pp.151-155. Sharp JM, Doran PM (2002) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol. Prog., 17: pp.979-992. Smeekens S (2000) Sugar-induced signal transduction in plants. Annu. Rev. Plant Mol. Biol., 51: pp.49-81 Taiz L., & Zeiger E. (2002) Plant Physiology, 3rd ed. Sinauer Associates, Inc., Pulishers Taya M, Yoyama A, Kondo O, Kobayashi T (1989) Growth characteristics of plant hairy roots and their cultures in bioreactors. J. of Chemical Engineering of Japan, 22(1): pp.84-89. Ullrich WR. (1992) Transport of nitrate and ammonium through plant membranes. In:Mengel K, Pilbeam DJ, eds. Nitrogen Metabolism of plants. London: Clareedon Press, pp. 121-137 Wang HQ, Zhong JJ, Yu JT (1997) Enhanced production of taxol in suspension cultures of Taxus chinensis by controlling inoculum size. Biotechnol. Lett., 19: pp.353-355. Xu TF, Zhang L, Sun XF, Zhang HM, Tang KX (2004) Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad). Biotechnol. Appl. Biochem., 39: pp.123-128. Yamakawa T, Kato S, Ishida K, Kodama T, Minoda Y (1983) Production of anthocyanins by Vitis cells in suspension culture. Agric. Biol. Chem., 47(10): pp.2185-2191. Yeoman, M. M., K. Lindsey, M. B. Miedzybrodzka and W. R. Mclauchlian (1982)Accumuliation of secondary products as facet of differentiation in plant cell andtissue culture. Cambridge University Press pp.65-82 Yibrah HS, Gronroos R, Lindroth A, Franzen H, Clapham D, von Arnold S (1996) Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res. 5: pp.75-85 Zhao J, Davis LC, Verpoorte R, (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 23: pp.283-333. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26486 | - |
dc.description.abstract | 本論文之目的為建構菘藍(Isatis indigotica Fort.)之毛狀根單株細胞,預期用以生產臨床中藥板藍根之藥效成分靛玉紅。
菘藍為二年生草本,常見中藥材「板藍根」之基原植物,其為臨床常用之中藥,具有清熱解毒、涼血利咽、解熱、抗炎等作用,現代藥理試驗亦證明其具有抗菌、抗病毒、增強免疫力及抗內毒素等作用。菘藍中含有多種化學成分,其中靛玉紅(indirubin)具有抗腫瘤作用,亦為近期被熱烈研究之藥用成份。 本研究藉農桿根群菌(Agrobacterium rhizogenes)感染菘藍外植體,既而誘導基因轉型產生毛狀根單株細胞後,以PCR進行轉形基因之確認,篩選出生長快速之菘藍毛狀根細胞。 本研究依各單株化毛狀根之生長速度及目標成分累積量篩選出優良品系,再探討菘藍毛狀根之誘導與培養、轉形基因之確認、毛狀根之生長曲線與生長動力學。培養至56天後,毛狀根乾重增加68.5倍,靛玉紅產量增加33.7倍。之後探討最佳培養方式進行毛狀根之單株培養,可得乾重0.065克,靛玉紅產量0.197毫克,最後達到快速提升靛玉紅產量之目的。 激發因子(elicitors) 能夠誘導植物產生植物防禦素(phytoalexins) ,進而誘導植物二次代謝物之生合成,因此成為有效增加毛狀根二次代謝物產量的方法。本研究亦檢討不同類型之激發因子對菘藍毛狀根靛玉紅累積量之影響,結果以茉莉酸(jasmonic acid)的誘導效果最佳,其最適作用濃度為250 μM,毛狀根在添加茉莉酸之三天後可得到較對照組提高6.08倍之靛玉紅含量。 為了檢驗菘藍毛狀根之氯仿萃取物是否能夠對癌細胞產生細胞毒性(cytotoxicity) 之作用,以兩種人類癌細胞株Hela及HepG2進行測試,觀察其生存率及型態變化。結果顯示毛狀根萃取物能夠使細胞形態出現明顯變化,包括細胞形狀較不規則、細胞膜皺縮、細胞核裂解等,並且顯著抑制Hela細胞的生長,40μM靛玉紅含量之萃取液使Hela細胞生存率下降至55.1%。建構菘藍之毛狀根細胞,可預期具備生長快速、培養時間短、藥用成分累積快速、成本較低等優點,將可促進對菘藍藥用成分之研究並擴大其醫療應用之貢獻。 | zh_TW |
dc.description.abstract | The object of this paper is to study on the hairy root cultures of Isatis indigotica Fort, and to anticipate the production of indirubin in Chinese herbal medicine, Ban Lan Gen.
Isatis indigotica, a biennial herbaceous plant, is the botanical origin of the common herbal medicine, Ban Lan Gen. Ban Lan Gen is a common herbal medicine for clinical cure, and it has some therapeutic mechanism in antipyretic and anti-inflammatory properties.In recently pharmacological test, it proves working against anti-inflammatory, anti-bacteria, anti-virus, anti-endotoxin , and so on. (Chang, 2007) Isatis indigotica contains many chemical ingradients, and one component in the plant, indirubin, has been extensively investigated for its anti-tumor activities. Explants of Isatis indigotica were infected by Agrobacterium rhizogenes that hairy roots were induced on the explants. The gene transformation of monoclonal hairy-root cultures were identified by PCR. And then, fast-growing clones were screened and cultured. This study has screened the best hairy root cultures depending on the growth rate and accumulation of medical ingredients. And then, we investigate the induction, cultivation, identification of the gene transformation, growth curve, growth kinetics. In a 56 days’ culture, the dry biomass of the hairy root increases 68.5 times and the indirubin production increases 33.7 times. We investigate the optimum medium to culture the hairy root. The biomass is 0.065g and the indirubin is 0.197mg in 21 days’ culture. Therefore, we could cultivate the hairy roots in optimum cultural condition to increase the productivity of indirubin. The addition of elicictors to the hairy root cultures is an effective method for inducing the biosynthesis of plant secondary metabolites by increasing the accumulation of phytoalexins in plant cells. In this study, using different types of elicitors to investigate the effect of the indirubin content in Isatis indigotica hairy roots and found that the most effective one was jasmonic acid. Three days after the addition of jasmonic acid to the hairy root cultures by final concentration of 250μM, the indirubin content was 6.08-fold increase compared with the controls. To analyze the cytotoxicity of the hairy root chloroform extracts, we use two human carcinoma cell lines, Hela and HepG2 cells, to examine the viability and morphology.It results the morphological changes in Hela and HepG2 cells were observed when exposed to the hairy root extracts, including membrane shrinking, and nuclear fragmentation. Obviously, hairy root extracts can inhibit the viability of Hela cells. The extracts containing 40μM indirubin could decrease the viability to 55.1% of the Hela cell The hairy root of Isatis indigotica has many advantages including fast growing rate, short cultivating time, fast accumulation of medical ingredients, lower cost, and so on. It will advance in studies of medical components of Isatis indigotica and expand contributions of the medical application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:12:07Z (GMT). No. of bitstreams: 1 ntu-97-R95b47412-1.pdf: 1504510 bytes, checksum: de15a236b32f826fa6592d24d0bde37e (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
第一章 前言 1 第一節 菘藍 1 一、 菘藍之本草考證 1 二、 型態與特徵 2 三、 植物資源 2 第二節 菘藍之成分與藥理研究 4 一、 菘藍之化學組成 4 二、 菘藍藥理作用之研究 5 第三節 植物二次代謝物 7 第四節 毛狀根系統之建立 8 一、 農桿根群菌治病結構及功能 8 二、 農桿根群菌之感染機制 15 三、 毛狀根之建立與培養 18 四、 毛狀根之特性及應用 20 第五節 激發因子對毛狀根生長與二物代謝物合成之影響 22 一、 激發因子之定義與分類 22 二、 激發因子之作用機制 23 第六節 研究目的 25 研究大綱 26 第二章 材料與方法 27 第一節 菘藍無菌植株 27 第二節 菘藍毛狀根之誘導與培養 28 第三節 菘藍毛狀根之確認 30 第四節 菘藍毛狀根之藥效成分分析 32 第五節 菘藍毛狀根生長特性之探討 34 第六節 培養基組成之最適化探討 35 第七節 激發因子對二物代謝物產量之影響 39 第八節 菘藍毛狀根萃取液對人類癌細胞生長之影響 41 第三章 結果與討論 43 第一節 菘藍無菌植株之培養 43 第二節 菘藍毛狀根之培養與誘導 45 第三節 菘藍毛狀根之確認與藥效成分分析 47 一、 毛狀根基因轉型之確認 47 二、 菘藍毛狀根藥效成分分析 49 第四節 菘藍毛狀根生長特性之探討 56 一、 生物量與靛玉紅含量之變化 56 二、 培養液pH與導電度之變化 60 第五節 菘藍毛狀根培養條件之最適化探討 62 一、 最適接種量 62 二、 不同培養基對毛狀根生長之影響 66 三、 碳源之影響 68 四、 氮源之影響 72 五、 鉀離子之影響 75 六、 磷酸鹽之影響 77 第六節 激發因子對菘藍毛狀根之影響 79 第七節 菘藍毛狀根萃取物之細胞毒性測試 83 第四章 結論 89 | |
dc.language.iso | zh-TW | |
dc.title | 菘藍毛狀根之建立及其藥效成分靛玉紅之生產研究 | zh_TW |
dc.title | Studies on the hairy root cultures of Isatis indigotica Fort. and the production of indirubin | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉雨田,張谷昇,劉新裕,許文林 | |
dc.subject.keyword | 菘藍,靛玉紅,農桿根群菌,毛狀根,激發因子, | zh_TW |
dc.subject.keyword | Isatis indigotica,indirubin,Agrobacterium rhizogenes,hairy root,elicitor, | en |
dc.relation.page | 99 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。