Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄
dc.contributor.authorYu-Ying Wuen
dc.contributor.author吳俞潁zh_TW
dc.date.accessioned2021-06-08T07:12:05Z-
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation[1] Min Seung LEE, “Characteristics of Nano-Floating-Gate Memory with Au
Nanoparticles in SiO2 Dielectrics,” Japanese Journal of Applied Physics
Vol. 46, No. 9B, 2007, pp. 6202–6204.
[2] Zengtao Liu, “Metal Nanocrystal Memories—Part I: Device Design and
Fabrication,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49,
p.1606 - 1613, NO. 9, SEPTEMBER, 2002.
[3] Chien-Chung Chen, “Using Carbon-Fluorine polymer as wet etching mask to
fabricate Si sawtooth grating and measuring with FTIR and Raman Spectrum
, ” National Taiwan University Master thesis(2010).
[4] QinWang1, Rui Jia1, “Comparison of discrete-storage nonvolatile memories:
advantage of hybrid method for fabrication of Au nanocrystal nonvolatile
memory, ” J. Phys. D: Appl. Phys, vol.41, (2008) 035109 (5pp).
[5] Yun-Shan Lo, “Field enhancement effect of nanocrystals in bandgap engineering
of tunnel oxide for nonvolatile memory application, ” APPLIED PHYSICS
LETTERS, vol. 94, 082901 ,2009.
[6] Kuan-Yuan Shen, “Metal-Oxide-Semiconductor Structure with Au Nanocrystals
for Charge Storage,” National Taiwan University
Master thesis (2006).
[7] Weihua Guan, “Fabrication and charging characteristics of MOS capacitor
structure with metal nanocrystals embedded in gate oxide, ” J. Phys. D: Appl.
Phys, vol.40, (2007) 2754–2758.
[8] V. Mikhelashvili, “A nonvolatile memory capacitor based on Au nanocrystals
with HfO2 tunneling and blocking layers,” APPLIED PHYSICS LETTERS, vol.
95 , 2009.
[9] A. Chandraa, “Gold nanoparticles via alloy decomposition and their application
to nonvolatile memory,” APPLIED PHYSICS LETTERS, vol. 87, p. 253113 -
253113-3, 2005.
[10] Chen-ChanWang, “Memory characteristics of Au nanocrystals embedded in
metal–oxide–semiconductor structure by using atomic-layer-deposited Al2O3 as
control oxide,” J. Phys. D: Appl. Phys ,vol. 40, (2007) 1673–1677.
[11] Lin, Jhao-Hong, “Agglomerate Germanium quantum dot from different
evaporated Germanium thin film thickness by laser annealing, ” National
Taiwan University Master thesis(2010).
[12] HUANG HONG-CHANG, “Study of Oxide Traps among Gold Nano-Particles in
Metal-Oxide-Semiconductor Device, ” National Taiwan University
Master thesis (2010).
[13] Sungho Heo, “The effect of KrF laser annealing within an ultrashort time on
metal-alumina-nitride-oxide-silicon-type flash memory devices,” I APPLIED
PHYSICS LETTERS,vol. 93, 172115 ,2008.
[14] Sang-Myeon Han , “High quality SiO2 gate insulator suitable for poly-Si TFTs
on plastic substrates employing inductively coupled plasma-chemical
vapor deposition with N2O plasma treatment and excimer laser annealing
, ” Journal of Non-Crystalline Solids , vol.352, (2006) , p.1434–1437.
[15] Kiyohito YAMADA1, “Floating Gate Metal–Oxide–Semiconductor Capacitor
Employing Array of High-Density Nanodots Produced by Protein
Supramolecule, ” Japanese Journal of Applied Physics ,vol. 45, No. 11, 2006, pp.
8946–8951.
[16] 黃俊銘,” Control and detection of APTES polarization with XPS,” National
University of Tainan Master thesis(2008).
[17] Weihua Guan, “Fabrication and charging characteristics of MOS capacitor
structure with metal nanocrystals embedded in gate oxide,” J. Phys. D: Appl.
Phys, vol. 40, (2007) 2754–2758.
[18] Yingtao Li, Su Liu, “Using different work function nanocrystal materials to
improve the retention characteristics of nonvolatile memory devices, ”
Microelectronics Journal, vol.40, 2009 , p.92–94, Institute of Microelectronics,
School of Physical Science and Technology, Lanzhou University, Lanzhou
730000, People’s Republic of China.
[19] H. Stafast, “Generation and annealing of defects in virgin fused silica (type III)
upon ArF laser irradiation: Transmission measurements and kinetic model, ”
Journal of Non-Crystalline Solids ,vol. 354, (2008) , p.25–31.
[20] Mitsutoshi Miyasakaa , “Excimer laser annealing of amorphous and
solid-phase-crystallized silicon films, ” JOURNAL OF APPLIED PHYSICS,
vol.86, NUMBER 10, Received 13 April 1999; accepted for publication 16
August 1999.
[21] E.G. Parada, “Improvement of silicon oxide film properties by ultraviolet
excimer lamp annealing,” Applied Surface Science, vol. 86, (1995) , p.294-298.
[22] Yasuo Hiroshige, “Formation of High-Quality SiO2 and SiO2/Si Interface
By Thermal-Plasma-Jet-Induced Millisecond Annealing and Postmetallization
Annealing, ” Japanese Journal of Applied Physics 49 (2010) 08JJ01.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26485-
dc.description.abstract本研究論文中,我製作金氧半(MOS)結構含有化學還原法製成之金奈米晶粒的記憶體元件,目的是為了儲存電荷。金奈米晶粒的密度及均勻度是藉由掃描式電子顯微鏡觀察,因為使用不同介面活性劑在沈積金奈米晶粒會有均勻度上的不同,而均勻度會造成不同的差異在高頻電容電壓曲線上,因為均勻度是聚積出現的關鍵。大家都知道使用電漿輔助化學氣相沈積成長控制氧化層的品質較差,所以我想利用KrF準分子雷射熱退火提升氧化層的品質。透過此種方式,KrF準分子雷射可以改善金奈米晶粒非揮發性記憶體在電性上的表現。接著我使用不同能量密度及不同發數,並且發現在特定雷射條件,即低能量密度且多發數可以擁有較佳的元件電性。另外根據電荷流失百分比,討論儲存電荷在不同KrF準分子雷射參數下在金奈米晶粒及氧化層缺陷的relaxation time及儲存比例。最後探討經過KrF準分子雷射熱退火後的二氧化矽膜會因為化學鍵結變化造成光學特性上的不同。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T07:12:05Z (GMT). No. of bitstreams: 1
ntu-100-R98943065-1.pdf: 1989982 bytes, checksum: b60f1747fb1389368a4fb71f1dabaf29 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… ….. I
誌謝 III
中文摘要 IV
ABSTRACT V
第一章 簡介 1
1.1 簡介 1
1.2 論文組織 2
第二章 基本原理介紹 3
2.1 量測儀器及量測方法介紹 3
2.2傅氏轉換紅外線光譜儀及量測方法的介紹 3
2.3掃描式電子顯微鏡 4
2.4 記憶體簡介 7
2.5 記憶體性能考量因素 8
2.6 非揮發性金奈米晶粒記憶體 9
2.7 化學還原法製作金奈米晶粒浮動閘極 9
2.8 實驗中元件電性測量的儀器 10
2.9 導納(ADMITTANCE)電性測量分析 10
2.10 電荷儲存能力 (CHARGE RETENTION)電性測量 13
2.11 中性平帶電壓電性測量 17
2.12 準分子雷射作用原理 21
第三章 元件製備流程 25
3.1 熱氧化成長穿隧氧化層 (TUNNELING OXIDE) 27
3.2 利用APTES(3-氨丙基三乙氧基矽烷)當作沈積金奈米晶粒的介面活性劑(SURFACTANT) 27
3.3 利用反應式離子蝕刻系統清除金奈米晶粒周圍的有機物 28
3.4 沈積控制氧化層(CONTROL OXIDE) 28
3.5 利用準分子雷射對控制氧化層達到熱退火(ANNEAL)的效果 30
3.6 正電鋁電極 30
3.7 塗佈(COATING)光阻 31
3.8 軟烤 (SOFT BAKE) 31
3.9 曝光與顯影 32
3.10 硬烤 (HARD BAKE) 32
3.11 濕蝕刻 (WET ETCHING) 32
3.12 去光阻 33
3.13 背面鋁電極 33
第四章 實驗結果和討論 35
4.1 選擇使用金奈米晶粒當作我研究中的金屬晶粒 35
4.2 短分子APTES介面活性劑沈積金奈米晶粒有較佳均勻度 36
4.3 金奈米晶粒在不同介面活性劑(SURFACTANT)均勻度的比較 38
4.4 3-氨丙基三乙氧基矽烷與POLY-LYSINE在高頻電容電壓曲線上的不同 40
4.5 利用電荷流失百分比、介面缺陷密度、中性平帶電壓探討準分子雷射在不同能量密度對氧化層缺陷熱退火後的影響 41
4.6利用電荷流失百分比、介面缺陷密度、中性平帶電壓探討準分子雷射在不同發數對氧化層缺陷熱退火後的影響 47
4.7 利用電荷流失百分比分析電子在金奈米晶粒及缺陷的RELAXATION TIME及儲存的比例 49
4.8 分析經過準分子雷射在不同能量密度下電子在金奈米晶粒及缺陷的RELAXATION TIME及儲存的比例 50
4.9 分析經過準分子雷射在不同發數(PULSE NUMBER)下電子在金奈米晶粒及缺陷的RELAXATION TIME及儲存的比例 54
4.10 KRF準分子雷射熱退火造成氧化層內鍵結的變化 56
第五章 結論 59
參考文獻 60
dc.language.isozh-TW
dc.subject金奈米晶粒zh_TW
dc.subject高頻電容電壓曲線zh_TW
dc.subject聚積zh_TW
dc.subject介面活性劑zh_TW
dc.subjectKrF準分子雷射zh_TW
dc.subjecthigh frequency capacitance voltage curveen
dc.subjectgold nanoparticleen
dc.subjectKrF excimer laseren
dc.subjectsurfactanten
dc.subjectaccumulationen
dc.title利用低能量密度準分子雷射熱退火改善金奈米晶粒非
揮發性記憶體
zh_TW
dc.titleApply Low Energy Density Excimer Laser Annealing to
Improve Gold Nanoparticle Nonvolatile Memory
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫允武,孫建文,田維誠,林致廷
dc.subject.keyword高頻電容電壓曲線,聚積,介面活性劑,KrF準分子雷射,金奈米晶粒,zh_TW
dc.subject.keywordhigh frequency capacitance voltage curve,accumulation,surfactant,KrF excimer laser,gold nanoparticle,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2011-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved