請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26478
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘子明 | |
dc.contributor.author | CHeng-Lun Wu | en |
dc.contributor.author | 吳政倫 | zh_TW |
dc.date.accessioned | 2021-06-08T07:11:49Z | - |
dc.date.copyright | 2008-08-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | 參考文獻
玉田英明。1988。紅麴各種調味料之應用。食品及科學 July: 96-99。 李昭蓉。1997。漫談紅麴菌。食品工業月刊 29: 83-89 。 佐藤喜吉。1936。東洋產 Monascus 屬分類に對すゐ—考察。日農化會誌。12: 583-586。 李昭蓉(1997)漫談紅麴菌,86-89。食品工業月刊,第29 卷,第2 期。 林讚峰。1992。紅麴菌研究發展之演進。科學農業 40: 193-198。 林讚峰。1994。紅麴菌的特性及應用。生物產業 5: 29-35。 林讚峰。1995。紅麴菌培養工藝及紅麴應用之演進。製酒科技專論彙編 17: 156-168。 林讚鋒。1983。紅麴菌的鑑定及實用分類法。製酒科技專論彙論。5:104-113。 區少梅。2002。吃 GABA 降血壓-神奇的γ-胺基丁酸。元氣齋出版社 莊淑惠。2003。紅麴色素之應用。食品工業。35:3-8。 許贛榮與傅金泉。1998。紅麴產品的合法化與菌種分離及有害物質橘黴素-當今歐洲紅麴生產及應用的焦點。中國釀造。5:6-10。 陳明造、林坤炳、郭秀蘭與曾穎玉。1997。豬肉在紅麴菌、乳酸菌和酵母菌等培養液浸漬期間色澤、TBA及VBN的變化。中華農學會報 181: 68-75。 陳松生、毛寧與陳哲超。1995。紅麴黴的麥角固醇研究。食品與發酵工業 6: 18-23。 陳欣長。1999。加熱與乾燥對基隆山藥之機能性影響-對大白鼠糖代謝及脂質代謝的影響。國立海洋大學食品科學系碩士論文 陳彥霖、李昭蓉、陳建州與袁國芳。1998。紅麴菌種的研究開發與應用。食品工業月刊 30: 1-10。 陳慶源、莊淑惠。2003。綜論紅麴產品之開發與應用。食品工業。35:1-2。 樽井庄一。1993。紅麴的開發與利用。食品及科學 28: 47-50。 謝依庭與潘子明。2002。市售紅麴產品所含二次代謝物分析方法之建立與檢測。中華生質能源學會會誌 21: 63-71. 蘇遠志、陳文亮、方鴻源、翁浩慶與王文祥。1970。紅麴菌 (Monascus anka) 之菌學研究。中國農業化學會誌。8:45-58。 蘇遠志。2001。紅麴製品應用與市場概況。生物產業 12: 68-75 蘇遠志。紅麴的工業開發與應用現況。發酵保健食品研討會。2004 年6 月25 日。台北。 Akihisa, T., Tokuda, H., Yasukawa, K., Ukiya, M., Kiyota, A., Sakamoto, N., Suzuki, T., Tanabe, N., and Nishino, H. 2005. Azaphilones, furanoisophthalides, and amino acids from the extracts of monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Aric Food Chem, 53: 562-565. Albers, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rotherock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapler, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. 1980. Mevinolin: a highly potent competitive inhibitor of hydroxy- methylglutaryl-coenzyme A reductase and a cholesterol lowering agent. Proc Natl Acad Sci U.S.A, 77: 3957-3961. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., and Murtagh, F. R. 1995. An English translation of Alzheimer's 1907 paper, 'Uber eine eigenartige Erkankung der Hirnrinde'. Clin Anat, 8: 429-431. Aniya, Y., Ohtani, I.I., Higa, T., Miyagi, C., Gibo, H., Shimabukuro, M., Nakanish, H., and Taira, J. 2000. Dimerumic acid as an antioxidant of the mold: Monascus anka. Free Radi Boil Medic, 28: 999-1004. Aniya, Y., Yokomakura, T., Yonamine, M., Shimada, K., Nagamine, T., Shimabukuro, M., and Gibo, H. 1999. Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol, 32: 225-231. Aoki, H., Uda, I., Tagami, K., Furuya, Y., Endo, Y., and Fujimoto, K. 2003. The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem, 67: 1018-1023. Baggett, J.M., and Berndt, W.O. 1984. Renal and hepatic glutathione concentrations in rats after treatment with hexachloro-1,3-butadiene and citrinin. Arch Toxicol. 56:46-49. Blanc, P. J., Laussac, J. P., Lebars, J., Lebars, P., Loret, M. O., Pareilleux, A., Prome, D., Prome, J. C., Santerre, A. L., and Goma, G. 1995. Characterization of monascidin-a from monascus as citrinin. Int J Food Microbiol, 27: 201-213. Blanc, P. J., Loret, M. O., Santerre, A. L., Pareilleux, A., Prome, D., Prome, J. C., Laussac, J. P., and Goma, G. 1994. Pigments of Monascus. J Food Sci, 59: 862-865. Brown, M.S., and Golstein, J. L. 1984. How LDL receptors influence cholesterol and atherosclerosis. Sci Amer, 251: 52-60. Budavari, S., Maryadele, J.O., Smith, A., and Heckelman, P.E. 1989. The Merck Index. 11:2330-2331. Chandler, M., McIntyre, C.R., and Simpson, T.J. 1992. Biosynthesis of LL-D253a, a polyketide chromanone metabolite of phoma pigmentivora: incorporation of 13C, 2H and 18O labelled precursors. J Chem Soc Perkin Trans I.2285-2293. Dendorfer, A., Dominiak, P., and Schunkert, H. 2005. ACE inhibitors and angiotensin II receptor antagonists. Handb Exp Pharmacol, 170: 407-442. Dennis, W. H., Frederick, H. W., Terry, D. W., and James, D. S. 1979. High performance liquid chromatographic determination of amino acid in the picomole range. Anal Chem, 51: 1738-1341. Endo, A. 1969. A new hypocholesterolemic agent produced by a Monascus species. J Antibiot, 32: 852-854. Endo, A. 1980. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot, 33: 334-336. Endo, A., and Hasumi, K. 1985. Dihydromonacolin L and monacolin X, new metabolites those inhibit cholesterol biosynthesis. J Antibiot, 38: 321-327. Fabre, C. E., Santerre, A. L., Loret, M. O., Baberian, R., Pareilleux, A., Goma, G., and Blanc, P. J. 1993. Production and food applications of the red pigments of Monascus ruber. J Food Sci, 58: 1099-1102. Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol., 37: 96-105. Glenner, G. G., and Wong, C. W. 1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys Res Commun, 120: 885-890. Grover, S. A., Coupal, L., Paquet, S., and Zowall, H. 1999. Cost-effectiveness of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in the secondary prevention of cardiovascular disease: forecasting the incremental benefits of preventing coronary and cerebrovascular events. Arch Intern Med, 159: 593-600. Hajjaj, H., Klaebe, A., Loret, M.O., Goma, G., Blanc, P.J., and Francois, J. 1999. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol. 65:311-314 Henderson, A. S. 1990. Epidemiology of dementia disorders. Adv Neurol, 51: 15-25. Herbert, P., Barros, P., Ratola, N., and Alives, A. HPLC determination of amino acids in musts and port wine using OPA/FMOC derivatives. Journal of food science, 65: 1130-1133. Holmes, C. 2002. Genotype and phenotype in Alzheimer's disease. Br J Psychiatry, 180: 131-134. Irvine, R. J., White, J., and Chan, R. 1997. The influence of restraint on blood pressure in the rat. J Pharmacol Toxicol Methods, 38: 157-162. Jeun, J., Jung, H., Kim, J. H., Kim, Y. O.,Youn, S. H., Shin, C. S. 2008. Effect of the monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food chemistry, 8: 1078-1085. Jordan, W. H., and Carlton, W. W. 1978. Citrinin mycotoxicosis in the Syrian hamster. Food Cosmet Toxicol, 16: 355-363. Jordon, W. H., Carlton, W. W., and Sansing, G. A. 1977. Citrinin mycotoxicosis in the mouse. Food Cosmet Toxicol, 15: 29-34. Jula, A., Marniemi, J., Huupponen, R., Virtanen, A., Rastas, M., Ronnemaa, T. 2002. Effects of diet and simvastatin on serum lipids, insulin, and antioxidants in hypercholesterolemic men. JAMA, 287: 598-606. Juliano, B. O. 1985. The rice grain and its gross composition. The American Association of Cereal Chemists Inc Minnesota, USA, 17-57. Juzlova, P., Martinkova, L., and Kren, V. 1996a. Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol, 16: 163-170. Juzlova, P., Rezanka, T., Martinkova, L., and Kren, V. 1996b. Long-chain fatty acids from Monascus purpureus. Phytochemistry, 43: 151-153. Kimura, K., Komagata, D., Murakawa, S., and Endo, A. 1990. Biosynthesis of monacolins: conversion of monacolin J to monacolin K (mevinolin). J Antibiot, 44: 1621-1622. Kohama, Y., Matsumoto, S., Mimura, T., Tanabe, N., Inada, A., and Hakanishi, T. 1987. Isolation and identification of hypotensive principles in red-mold-rice. Chem Pharmaceut Bull. 35: 2484–2489. Komagata, D., Murakawa, H., and Endo, A. 1989. Biosynthesis of monacolins conversion of monacolin L to monacolin J by a monooxygenase of Monascus ruber. J Antibiot, 42: 407-412. Kono, I., and Himeno, K. 2002. Accumulation of γ-aminobutyric acid in beni-koji after anaerobic incubation. Nippon Jozo Kyokaishi, 97: 785-790. Kregel, K. C., Overton, J. M., Johnson, D. G., Tipton, C. M., Seals, D. R. 1991. Mechanism for pressor response to nonexertional heating in the conscious rat. J Appl Physiol, 71: 192-196. Krejci, M.E., Bretz, N.S., and Koechel, D.A. 1996. Citrinin produces acute adverse changes in renal function and ultrastructure in pentobarbital-anesthetized dogs without concomitant reductions in [potassium]plasma. Toxicology. 106:167-177. Kushiru, T., Hashida, J.,Kawamura, H., Mitsubayashi, H., Saito, T., Suzuki, Y., Takahashi, N., Ishii, T., Kimura, T., Tsuji, K., Tanabe, N., Asano, K., Abe, S., and Tarui, S. 1996. Clinical effects of beni-koji in mild essential hypertension--a multi-center double-blind comparison with placebo. Jpn. J. Nephrol. 38: 625-633. Laufs, U., Fata, L. V., Plutzky, J., and Liao, J. K. 1998. Upregulation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Circulation, 97: 1129-1135. Lee, C. L., Chen, W. P., Wang, J. J., and Pan, T. M. 2007a. A simple and rapid approach for removing citrinin while retaining monacolin K in Red Mold Rice. J Agric Food Chem, 55: 11101-11108. Lee, C. L., Hung, H. K., Wang, J. J., and Pan, T. M. 2007b. Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters. J Agric Food Chem, 55: 7162-7169. Lee, C. L., Kuo, T. F., Wang, J. J., and Pan, T. M. 2007c. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation. J Neurosci Res, 85: 3171-3182. Lee, C. L., Tsai, T. Y., Wang, J. J., and Pan, T. M. 2006a. In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl Microbiol Biotechnol, 70: 533-540. Lee, C. L., Wang, J. J., and Pan, T. M. 2006b. Synchronous analysis method for detection of citrinin and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int, 89: 669-677. Lin, W. Y., Hsu, W. Y., Hish, C. H., and Pan, T. M. 2007. Proteome changes in Caco-2 cells treated with Monascus-fermented red mold rice extract. J Agric Food Chem, 55: 8987-8994. Lin, W. Y., Song, C. Y., and Pan, T. M. 2006. Proteomic analysis of Caco-2 cells treated with monacolin K. J Agric Food Chem, 54: 6192-6200. Monica, S., Role, F. M., Johanna, F. G. 1999. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutation Research, 444: 7-16. Nozaki, H., Date, S., Kondo, H., Kiyohara, H., Takaoad, Tada, T., and Nakayama, M. 1991. Ankslactone, a new α,β-unsaturated γ-lactone from Monascus anka. Agri Biolog Chem, 55: 899-900. Rhyu, M. R., Kim, D. K., Kim, H. Y., and Kim, B. K. 2000. Nitric oxide-mediated endothelium-dependent relaxation of rat thoracic aorta induced by aqueous extract of red rice fermented with Monascus ruber. J Ethnopharmacol, 70: 29-34 Ribeiro, S.M., Chagas, G.M., Campello, A.P., and Kluppel, M.L. 1997. Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct. 15:203-209. Robert, L. H., and Stephen, C. M. 1983. Amino acid analysis by reverse-phase high-peformance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Anal Biochem, 136: 65-74. Roses, A. D. 1995. On the metabolism of apolipoprotein E and the Alzheimer diseases. Exp Neurol, 132: 149-156. Rossetti, V., and Lombard, A. 1996. Determination of glutamate decarboxylase by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 681:63-67 Sabater-Vilar, M., Maas, R.F., and Fink-Gremmels, J. 1999. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res. 444:7-16. Sake, F. 1983. Induction of γ-glutamyl transpeptidase and glutathione S-transferase in cultured fetal rat hepatocytes by laccaic acid and monascus pigments. Chem Interact, 44: 17-26. Sankawa, U., Ebizuka, H., Noguchi, H., Isikawa, Y., Kitaghawa, S., Yamaoto, Y., Kobayashi, T., and Iitak, Y. 1983. Biosynthesis of citrinin in Aspergillus terreus. Tetrahedron. 39:3583-3591. Santosh, K., and Narayan. S. P. 1997. The Metabolism of γ-aminobutyrate (GABA) in Fungi. Mycological Research, 101: 403-409. Sansing, G. A. 1977. Citrinin mycotoxicosis in the guinea-pig. Food Cosmet Toxicol, 15: 553-561. Simpson, T.J. 1986. Studies of polyketide chain-assembly processes, Mycotoxons and phycotoxins. The Netherlands. 12: 85-96. Stanton, H. C., and Woodhouse, F. H. 1960. The role of the syspathetic nervous system in the cardiovasvular effects of systemically administer GABA. Arch Int Pharmacodyn, 267: 46-58. Stein, E. A., Lane, M., and Laskarzewski, P. 1998. Comparison of statins in hypertriglyceridemia. Am J Cardiol, 81: 66-69. Su, N. W., Lin, Y. L., Lee, M. H., and Ho, C. Y. 2005. Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem, 53: 1949-1954. Su, Y. C., Wang, J. J., Lin, T. T., and Pan T. M. 2003. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. Ind Microbiol Biotechnol, 30: 41-46. Su, Y. C., Wang, J. J., Lin, T. T., and Pan, T. M. 2003. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol, 30: 41-46. Sudjarwo, S. A., Hori, M., and Karaki, H. 1992. Effect of endothelin-3 on cytosolic calcium level in vascular endothelium and on smooth muscle tension. Eur J Pharmacol, 229: 137-142 Suzuki, T., and Homma, S. 2007. Treatment of hypertension and other cardiovascular risk factors in patients with metabolic syndrome. Med Clin North Am, 91: 1211-1223. Taal, M. W., Brenner, B. M. 2000. Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int, 57: 1803-1817. Taira, J., Miyagi, C., and Aniya, Y. 2002. Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem Pharmacol Mar, 63: 1019-1026. Teng, S. S., Feldheim, W. 1998. Analysis of anka pigments by liquid chromatography with diode array detection and tandem mass spectrometry. Chromatographia, 47: 529-536. Tsuji, K., Ichikawa, T., Tanabe, N., Abe, S., Tarui, S., and Nakagawa, Yasue. 1992. Effect of two kinds of Koji on blood pressure in spontaneously hypertensive rats. Nippon Nogeikagaku Kaishi, 66: 1241-1246. Wang, J. J., Lee, C. L., and Pan, T. M. 2003. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol, 30: 669-676. Wang, J.J., Lee, C.L., and Pan, T.M. 2004. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem. 52:6977-6982. Wang, J. J., Shieh, M. J., Kuo, S. L., Lee, C. L., and Pan, T. M. 2006. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl Microbiol Biotechnol, 70: 247-253. Wong, H. C., and Bau, Y. S. 1977. Pigmentation and antibacterial activity of fast neutron-ray and x-ray-induced strains of Monascus purpureus went. Plant Physiol, 60: 578-581. Wong, H. C., and Koehler, P. E. 1981. Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J Food Sci, 46: 589-592. Yasukawa, K., Takahashi, M., Natori, S., Kawai, K., Yamazaki, M., Takeuchi, M., and Takido, M. 1994. Azaphilones inhibit tumor promotion by 12-o-tetradecanoylphorbol-13-acetate. Oncology, 45: 108-112 Yu, C. C., Lee, C. L., and Pan, T. M. 2006. A novel formulation approach for preparation of nanoparticulate red mold rice. J Agric Food Chem, 54: 6845-6851. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26478 | - |
dc.description.abstract | 高血壓是造成代謝症候群的危險因子之一,須長期靠降壓物質控制。紅麴發酵產物含有降血壓功效物質 γ-胺基丁酸 (γ-aminobutyric acid, GABA),為抑制性神經傳導物質,可引起血管的擴張。本研究建立了紅麴發酵產物酒萃物中 acid form 及 lactone form monacolin K、citrinin、黃色素 monascin 及 ankaflavin 的同步分析方法,以及水萃物 GABA 的衍生化分析方法,再以 Monascus purpureus NTU 568 固態發酵方式篩選出最適培養方式及基質,以厭氧處理時間、厭氧處理起始時間及乙醇添加量,藉由三因子三階層的反應曲面法提高 GABA 含量。結果顯示,以山藥為基質生產之 GABA 較米高,發酵過程 GABA 含量在第六天最高,在第八天開始厭氧處理 60 小時及 3% 乙醇添加下可使 GABA 含量從 134 mg/kg 提高至 513 mg/kg,citrinin 從 30.81 ppm 降低至 6.35 ppm,趨勢顯示厭氧可造成 GABA 含量提升及 citrinin 含量下降。蛋白質經蛋白酶水解或微生物發酵生成之短鏈胜肽,具有血管張力素轉換酶抑制劑 (angiotensin I converting enzyme inhibitor, ACEI) 的活性,ACEI 為一降血壓物質。本研究又利用固態發酵得到的紅麴米與紅麴山藥進行ACEI活性分析,再以自發性高血壓大鼠 (spontaneous hypertensive rat, SHR) 經過連續八週管餵紅麴米或紅麴山藥,以評估短效性與長效性降血壓效果。結果顯示,單一次餵食後紅麴米可降低收縮壓 8 mmHg 與舒張壓 9 mmHg,紅麴山藥顯著降低收縮壓 20 mmHg 與舒張壓 17 mmHg (p<0.05),且持續至八小時後仍有效果;餵食八週後紅麴米顯著降低收縮壓 20 mmHg 與舒張壓 18 mmHg (p<0.05),紅麴山藥顯著降低收縮壓 26 mmHg 與舒張壓 22 mmHg (p<0.05),且不會造成肝、腎、肌肉、心律影響及體內電解質不平衡,紅麴山藥在動物試驗結果顯示較紅麴米有更顯著降血壓效果。 | zh_TW |
dc.description.abstract | Hypertension is one critical factor of metabolic symdromes, and it has to be controlled by anti-hypertensive substances. Red mold fermented products contain an antihypertensive substance, γ-aminobutyric acid (GABA). GABA is one of the inhibitory neurotransmitters, and it can cause blood vessel relaxation. In this study, we established a rapid synchronous analysis method for detection of acid form and lactone form of monaolin K, citrinin, monascin, and ankaflavin levels in red mold fermented products ethanol extracts. And we also established an analysis method for the detection of GABA level in red mold fermented products aqueous extracts. In addition, various cultivation containers (tray and packed-bottle), substrate, culture conditions (pH, cultural time, ethanol addition and anaerobic treatment time) were selected to investigate the effect on GABA and citrinin production. In the result, tray and Dioscorea batatas were chosen as optimal culture apparatus and substrate, respectively.
Furthermore, cultural time, ethanol addition and anaerobic treatment time significantly influenced both GABA and citrinin production of M. purpureus NTU 568 under solid state dioscorea fermentation, so they were chosen as the factors of the response surface methodology (RSM) experiment in order to investigate the optimal culture condition. From the result of statistical figures, we can gain the GABA production at 513 mg/kg and citrinin production at 6,350 μg/kg from red mold dioscorea when the culture conditions are as following: culture 8 days, anaerobic treatment 60 hours, and adding 3% ethanol. We further used the Monascus fermented dioscorea with high GABA production to investigate the effect on anti-hypertension in rat model of spontaneous hypertension. The result showed that the systolic and diastolic blood pressure levels were decreased significantly after eight-hour daily oral administration, but the heart rates were not affected. The systolic and diastolic blood pressure levels were decreased significantly after eighth-week long-term oral administration, but the heart rates were not affected. From the result of tissue section staining of the aorta elastin fiber, rats with orally administrated red mold dioscorea had elastin fiber more straight than the control group. Therefore, these results suggest that anti-hypertensive effect of Monascus fermented dioscorea can prevent hypertension effectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:11:49Z (GMT). No. of bitstreams: 1 ntu-97-R95b47107-1.pdf: 4168651 bytes, checksum: c00cc846402db3f8733cb4a432d37cdb (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
第一章 文獻回顧............................................1 第一節 紅麴菌之文獻回顧...................................1 1.1 古今有關紅麴功效之研究及記載..........................1 1.2 紅麴菌之特性..........................................2 1.3 紅麴生產之高價值二級代謝產物..........................5 1.4 紅麴機能性食品之開發.................................13 1.5 橘黴素 Citrinin 之研究...............................16 第二節 山藥與紅麴之關係..................................23 第三節 厭氧培養對真菌 GABA 之影響........................25 第四節 胺基酸分析........................................25 4.1 衍生化方法:.........................................25 4.2 常用的胺基酸衍生化試劑與衍生化反應...................26 第五節 高血壓之回顧與研究................................28 5.1 高血壓與代謝症候群...................................28 5.2 血壓之調控...........................................29 5.3 應用於改善高血壓疾病之相關研究.......................31 第六節 哺乳類小動物的血壓量測............................32 6.1 侵入式血壓計.........................................32 6.2 非侵入式血壓計.......................................33 第二章 研究動機與目的....................................36 第三章 材料與方法........................................38 第一節 儀器..............................................38 1.1 固態培養相關設備.....................................38 1.2 萃取及分析相關設備...................................38 1.3 其他.................................................39 第二節 藥品..............................................39 2.1 標準品...............................................39 2.2 ㄧ般試藥.............................................39 2.3 萃取分析溶劑.........................................39 2.4 培養基...............................................40 第三節 紅麴菌菌株來源、培養方法..........................40 3.1 試驗菌株.............................................40 3.2 紅麴菌之種菌培養方法.................................40 第四節 紅麴菌固態發酵方法與條件..........................41 第五節 建立紅麴產物中初級代謝產物胺基酸含量之分析方法....42 5.1 紅麴產物水萃物中胺基酸之萃取方法.....................42 5.2 胺基酸 PITC 衍生化之 HPLC 分析條件...................43 5.3 胺基酸 OPA 衍生化之 HPLC 分析條件....................43 第六節 建立紅麴次級代謝產物 monacolin K、citrinin、monascin 及 ankaflavin 之同步分析方法..............................44 6.1 紅麴產物酒萃物之萃取方法.............................44 6.2 標準液之配製.........................................44 6.3 紅麴中 monacolin K lactone form、acid form 及 citrinin 濃度之同步分析方法........................................44 6.4 黃色素 (monascin、ankaflavin) 濃度之測定.............45 第七節 以反應曲面法探討最適培養條件之實驗設計............45 第八節 降血壓功效評估....................................46 8.1 紅麴發酵產物體外 ACEI 活性之測定.....................46 8.2 紅麴發酵產物降血壓之體內功效性評估試驗...............49 第四章 結果與討論........................................53 第一節 紅麴發酵產物之代謝物分析...........................53 1.1 建立紅麴酒萃物次級代謝物 monacolin K、citrinin、monascin 與 ankaflavin 之同步分析方法..............................59 1.2 建立紅麴水萃物 GABA 之分析方法.......................67 第二節 紅麴發酵產物之培養................................72 2.1 麴盤與填充瓶式培養方式對紅麴代謝產物 GABA、citrinin 生成之影響....................................................72 2.2 不同基質對紅麴代謝產物 GABA 生成之影響...............72 2.3 培養條件對於紅麴代謝產物 GABA 生成之影響.............78 2.4 三因子三階層反應曲面法 (Response surface methodology) 之試驗......................................................84 2.5 厭氧處理促進紅麴生產 GABA 之影響.....................86 第三節 紅麴米及紅麴山藥降血壓功效評估...................100 3.1 紅麴米與紅麴山藥之基本成分分析......................100 3.2 紅麴米與紅麴山藥之體外 ACEI 活性比較................100 3.3 試驗動物體重變化....................................101 3.4 試驗動物之單一餵食後 24 小時內收縮、舒張血壓及心律短期變化.......................................................101 3.5 試驗動物餵食8週後之收縮、舒張血壓及心律長期變化.....102 3.6 基本安全性..........................................103 3.7 弓動脈組織切片染色..................................104 第五章 結論.............................................117 參考文獻.................................................120 圖次 圖 1-1 紅麴菌之生活史......................................4 圖 1-2 紅麴色素之結構......................................6 圖 1-3 Citrinin 之結構式..................................19 圖 1-4 M. ruber 合成citrinin 及紅色色素之途徑.............21 圖 1-5 紅麴菌中 citrinin 之生成途徑.......................22 圖 1-6 (A) OPA 衍生物之螢光全波長圖 (B) PITC 衍生物之 UV-VIS 全波長圖..................................................27 圖 1-7 ACE 調節血壓之機制圖...............................30 圖 1-8 非侵入式血壓計.....................................35 圖 2-1 研究大綱...........................................37 圖 4-1 李等同步分析方法中 monacolin K lactone form 和 monascin..................................................56 圖 4-2 紅麴產物中 monascin 及 ankaflavin 之同步分析方法圖譜 ..........................................................57 圖 4-3 UV 全波長吸收圖....................................58 圖 4-4 紅麴發酵產物中monacolin K lactone form、monacolin K acid form、citrinin、monascin 及 ankaflavin 之同步分析方法圖譜........................................................59 圖 4-5 紅麴產物質譜圖.....................................60 圖 4-6 Monacolin K acid form之 HPLC 標準檢量線............61 圖 4-7 Monacolin K lactone form之 HPLC 標準檢量線.........62 圖 4-8 Citrinin 之 HPLC 標準檢量線........................63 圖 4-9 Monascin 之 HPLC 標準檢量線........................64 圖 4-10 Ankaflavin 之 HPLC 標準檢量線.....................65 圖 4-11 紅麴米水萃物以 PITC 衍生化後之 HPLC 圖譜..........69 圖 4-12紅麴米水萃物以 OPA 衍生化後之 HPLC 圖譜............70 圖 4-13 GABA 之 HPLC 標準檢量線...........................71 圖 4-14 以不同容器培養紅麴次級代謝物 citrinin、GABA 生成之影響........................................................73 圖 4-15 紅麴發酵產物......................................75 圖 4-16 紅麴發酵產物......................................76 圖 4-17 GABA 含量每日變化.................................83 圖 4-18 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 citrinin 生成量之反應曲面圖......................89 圖 4-19 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................90 圖 4-20 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................91 圖 4-21 紅麴山藥固態培養之 citrinin 與 GABA 生成量之反應曲面交疊圖 (Ethanol conc. = 3%)...............................92 圖 4-22 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................93 圖 4-23 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................94 圖 4-24 紅麴山藥固態培養之 citrinin 與 monascin 生成量之反應曲面交疊圖 (Ethanol conc. = 1%)...........................95 圖 4-25 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................96 圖 4-26 厭氧處理起始時間、厭氧處理時間與乙醇濃度對紅麴山藥固態發酵時 GABA 生成量之反應曲面圖..........................97 圖 4-27 紅麴山藥固態培養之 citrinin 與 monascin 生成量之反應曲面交疊圖 (Ethanol conc. = 1%)...........................98 圖 4-28 紅麴發酵產物水萃物 ACEI 活性 HPLC 圖譜...........106 圖 4-29 單一次餵食紅麴產物後收縮血壓變化.................108 圖4-30單一次餵食紅麴產物後舒張血壓變化...................109 圖 4-31單一次餵食紅麴產物後心律變化......................110 圖 4-32 餵食紅麴產物八週間收縮血壓變化...................111 圖 4-33餵食紅麴產物八週間舒張縮血壓變化..................112 圖 4-34 餵食紅麴產物八週間心律變化.......................113 圖 4-35 實驗動物弓動脈切片鏡檢結果.......................116 表次 表 1-1 紅麴米、米之化學成分比較...........................24 表 3-1 固態發酵反應曲面法之三因子-三階層條件..............47 表 3-2 固態發酵之三因子-三階層之中心旋轉組合設計..........48 表 4-1 市售產品 MKL、MKA、CT、M 及 AF 含量................66 表 4-2 以填充瓶或麴盤培養對紅麴代謝物 GABA 及 citrinin 生成之影響......................................................74 表 4-3 不同品系山藥作為培養基質對紅麴代謝物 GABA 生成影響之比較........................................................77 表 4-4 不同之乙醇添加量對於 M. purpureus NTU 568 生成 GABA 之影響......................................................79 表 4-5 不同 pH 值對於 M. purpureus NTU 568 生成 GABA 之影響 ..........................................................80 表 4-6 不同培養時間對於 M. purpureus NTU 568 生成 GABA 之影響 ..........................................................81 表 4-7 不同厭氧處理時間對於 M. purpureus NTU 568 生成 GABA 之影響......................................................82 表 4-8 反應曲面法之因子與階層.............................87 表 4-9 紅麴代謝產物之三因子三階層反應曲面法實驗過程.......88 表 4-10 不同培養條件對紅麴產物 GABA、citrinin、monascin 及 ankaflavin 之影響.........................................99 表 4-11 紅麴米及紅麴山藥基本成分組成.....................105 表 4-12 各組實驗動物之平均體重...........................107 表 4-13 紅麴產物對實驗動物血清中 GOT 與 GPT 之影響.......114 表 4-14 紅麴產物對實驗動物血清中 CPK 與 電解質之影響.....115 | |
dc.language.iso | zh-TW | |
dc.title | 含 γ-胺基丁酸與血管收縮素 I 轉化酶抑制劑紅麴山藥之最適化生產與降血壓功效評估 | zh_TW |
dc.title | Study on the optimal culture condition of Monascus-fermented dioscorea rich in GABA and ACEI, and the evaluation of reducing the risk of hypertension | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇遠志,黃健雄,江文章,王志傑 | |
dc.subject.keyword | 紅麴,高血壓,血管張力素轉換酶,抑制劑, | zh_TW |
dc.subject.keyword | Red mold rice,hypertension,angiotensin I converting enzyme inhibitor, | en |
dc.relation.page | 129 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。