請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪重光 | |
| dc.contributor.author | Chih-Feng Wu | en |
| dc.contributor.author | 吳志峰 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:11:39Z | - |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | [1] G. Fettweis, The Wireless Roadmap, Vodafone Chair Mobile Communications Systems, Technische University Dresden, Germany, Sept. 2007.
[2] P. H. Moose,'A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction,' IEEE Trans. on Comm., vol. 42, no. 10, pp. 2908-2914, Oct. 1994. [3] T. Pollet, M. V. Bladel and M. Moeneclaey, 'BER Sensitivity of OFDM Systems to Carrier Offset and Wiener Phase Noise,' IEEE Trans. on Comm., vol. 43, no. 2/3/3, pp. 191-193, Feb./Mar./Apr. 1995. [4]M. Luise and R. Reggiannini, 'Carrier Frequency Acquisition and Tracking for OFDM Systems,' IEEE Trans. on Comm., vol. 44, no. 11, pp. 1590-1598, Nov. 1996. [5] M. Speth, S. A. Fechtel, G. Fock and H. Meyer, 'Optimum Receiver Design for Broad-Band Systems Using OFDM-Part I,' IEEE Trans. on Comm., vol. 47, no. 11, pp. 1668-1677, Nov. 1999. [6] R. van Nee, and R. Prasad, OFDM for Wireless Multimedia Communication, Artech House, Inc., 2000. [7] K. Shi, E. Serpedin and P. Ciblat, 'Decision-Directed Fine Synchronization in OFDM Systems,' IEEE Trans. on Comm., vol. 53, no. 3, pp. 408-412, Mar. 2005. [8] J. J. Van de Beek and M. Sandell, ML Estimation of Time and Frequency Offset in OFDM Systems,' IEEE Trans. on Signal Process., vol. 45, no. 7, pp. 1800-1805, Jul. 1997. [9] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams Publishing, 2002. [10] T. Fujisawa, J. Hasegawa, K. Tsuchie, T. Shiozawa, T. Fujita, T. Saito and Y. Unekawa, 'A Single-Chip 802.11a MAC/PHY With a 32-b RSIC Processor,' IEEE J. of Solid-State Circuits, vol. 38, no. 11, pp. 2001-2009, Nov. 2003. [11] C. F. Wu, M. T. Shiue and C. K. Wang, 'Joint Carrier Synchronization and Equalization for OFDM Systems over Multipath Fading Channel,' IEEE 68th VTC 2008-Fall, pp. 1-5, Sept. 2008. [12] F. M. Gardner, Phaselock Techniques, 3rd ed., John Wiley & Sons, Inc., 2005. [13] C. F. Wu, M. T. Shiue and C. K. Wang, 'Joint Carrier Synchronization and Equalization Algorithm - Loop-Delay Analysis and Complexity Consideration,' IEEE 70th VTC 2009-Fall, pp. 1-6, Sept. 2009. [14] S. Moridi and H. Sari, 'Analysis of four decision-feedback carrier recovery loops in the presence of intersymbol interference,' IEEE Trans. on Wireless Comm., vol. COM-33, pp. 543-550, 1985. [15] C. F. Wu, M. T. Shiue and C. K. Wang, 'Joint Carrier Synchronization and Equalization Algorithm - Closed-Loop Derivation,' IEEE 69th VTC 2009-Spring, pp. 1-5, Apr. 2009. [16] W. C. Lindsey, and C. M. Chie, 'A Survey of Digital Phase-Locked Loop,' Proceeding of the IEEE, vol. 69, no. 4, pp. 410-431, Apr. 1981. [17] R. C. Dorf and R. H. Bishop, Modern Control Systems, 8th ed., Addison-Wesley, 1998. [18] S. Haykin, Adaptive Filter Theory, 3rd ed., Prenticall Hall, 1996. [19] B. Come, R. Ness, S. Donnay L. Van Der Perre, W. Eberle, P. Wambacq, M. Engels and I. Bolsens, 'Impact of Front-End Non-Idealities on Bit Error Rate Performance of WLAN-OFDM Transceivers,' Microwave Journal, vol. 44, no. 2, pp. 126-140, Feb. 2001. [20] Part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, High-Speed Physical Layer in 5-GHz Band, IEEE 802.11a, 1999. [21] A. A. M. Saleh, R. A. Valenzuela, 'A Statistical Model for Indoor Multipath Propagation,' IEEE J. on Selected Areas in Comm., vol. SAC-5, no. 2. pp. 128-137, Feb. 1987. [22] M. Speth, S. A. Fechtel, G. Fock and H. Meyer, 'Optimum Receiver Design for OFDM-Based Transmission--Part II: A Case Study,' IEEE Trans. on Comm., vol. 49, no. 4, pp. 571-578, Apr. 2001. [23] K. Shi, E. Serpedin and P. Giblat, 'Decision-Directed Fine Synchronization for Coded OFDM Systems,' IEEE ICASSP, vol. 4, pp. 365-368, May 2004. [24] R. Prasad, OFDM for Wireless Communication Systems, Artech House Universal Personal Comm. Series, 2004. [25] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, New York, 2000. [26] P. Z. Peebles, Probability, Random Variables and Random Signal Principles, 4th ed., McGRAW-HILL, 2001. [27] R. W. Chang, 'Joint Optimization of Actomatic Equalization and Carrier Acquisition for Digital Communication,' The Bell Sys. Tech. Journal, vol. 49, no. 6, pp. 1069-1104, July 1970. [28] D. D. Falconer, 'Joint Adaptive Equalization and Carrier Recovery in Tow-Dimensional Digital Communication Systems,' The Bell Sys. Tech. Journal}, vol. 55, no. 3, pp. 317-334, Mar. 1976. [29] M. T. Shiue and S. S. Long, 'A Blind Frequency-Domain Equalization Algorithm for OFDM/DMT Systems Based on AGC and Carrier Recovery,' ITC-CSCC 2005, July 2005. [30] M. H. Hsieh and C. H. Wei, 'Channel Estimation for OFDM Systems Based on Comb-Type Pilot Arrangement in Frequency Selective Fading Channels,' IEEE Trans. Consumer Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998. [31] A. Troya, K. maharatna, M. Krstiv{c}, E. Grass, U. Jagdhold and R. Kraemer, 'Low-Power VLSI Implementation of the Inner Receiver for OFDM-Based WLAN Systems,' IEEE Trans. on Circuits and Systems, Part-I, vol. 55, no. 2, pp. 672-686, Mar. 2004. [32] P. A. Bello, 'Characterization of Randomly Time-Variant Linear Channels,' IEEE Trans. on Commun. Systems, vol. CS-11, pp. 360--393, Dec. 1963. [33] T. S. Rappaport, Wireless Communications: Principles and Prctice, 2nd ed., Prentice-Hall, Inc., 2002. [34] W. C. Jakes, Microwave Mobile Communications, John Wiley & Sons, Inc., 1974. [35] P. Dent, G. E. Bottomley and T. Croft, 'Jakes Fading Model Revisited,' Elect. Letters, vol. 29, no. 13, pp. 1162-1163, Jun. 1974. [36] R. W. Chang, 'Synthesis of Band Limited Orthogonal Signals for Multichannel Data Transmission,' Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966. [37] B. R. Saltzberg, 'Performance of an efficient parallel data transmission system,' IEEE Trans. on Comm. Tech., pp. 805-813, Dec. 1967. [38] S. B. Weinstein and P. M. Ebert, 'Data transmission by frequency division multiplexing using the discrete Fourier transform,' IEEE Trans. on Comm. Tech., vol. COM-19, pp. 628-634, Oct. 1971. [39] A. Peled and A. Ruiz, 'Frequency domain data transmission using reduced computational complexity algorithms,' IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 964-967, 1980. [40] W. C. Lindsey and C. M. Chie, Phase-Locked Loops and Their Applications, IEEE Press Book, 1986. [41] H. Meyr and G. Ascheid, Synchronization in Digital Communications: Phase-, Frequency-Locked Loops, and Amplitude Control, John Willey & Sons, vol. 1, 1990. [42] M. Engels, Wireless OFDM Systems: How to make them work, Kluwer Academic Pub., 2002. [43] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications, John Wiley & Sons Ltd., 2007. [44] L. Hanzo, W. Webb and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation, John Wiley & Sons Ltd., 2000. [45] T. Pollet, M. van Bladel and M. Moeneclaey, 'The BER Performance of OFDM Systems using Non-Synchronized Sampling,' IEEE Global Telecomm. Conf., pp. 253-257, 1994. [46] T. M. Schmidl and D. C. Cox, 'Low-Overhead, Low-Complexity [Burst] Synchronization for OFDM,' IEEE Int. Conf. on Comm., vol. 3., pp. 1301-1306, 1996. [47] L. Erup, F. M. Gardner and R. A. Harris, 'Interpolation in Digital Modems - Part II: Implementation and Performance,' IEEE Trans. on Comm., vol. 41, no. 6, pp. 998-1008, 1993. [48] C. Rapp, 'Effects of the HPA-nonlinearity on a 4-DPSK/OFDM signal for digital sound broadcasting system,' The 2nd European Conf. on Satellite Comm., (ECSC-2), pp. 1-7, Oct. 1991. [49] E. Costa and S. Pupolin, 'M-QAM-OFDM System Performance in the Presence of a Nonlinear Amplifier and Phase Noise,' IEEE Trans. on Comm., vol. 50, no. 3, pp. 462-472, 2002. [50] C. L. Liu, 'Impacts of I/Q Imbalance on QPSK-OFDM-QAM Detection,' IEEE Trans. on Consumer Electronics, vol. 44, no. 3, pp. 984-898, 1998. [51] J. Tubbax, B. Come, L. V. der Perr, L. Deneire, S. Donnay, M. Engels, 'Compensation of IQ imbalance in OFDM Systems,' IEEE Inter. Conf. on Comm., pp. 3403-3407, 2003. [52] B. Razavi, RF Microelectronics, Prentice-Hall Inc., 1998. [53] A. Mashour, W. Domino and N. Beamish, 'On the Direct Conversion Receiver - A Tutorial,' Microwave J., vol. 44, no.6, pp. 114-128, Jun. 2001. [54] R. Svitek and S. Raman, 'DC Offsets in Direct-Conversion Receivers: Characterization and Implications,' IEEE Microwave Mag., vol. 6, no.3, pp. 76-86, Sept. 2005. [55] J. E. Volder, 'The CORDIC Trigonometric Computing Technique,' IRE Trans. on Electronic Computers, vol. EC-8, no. 3, pp. 330-334, 1959. [56] J. E. Volder, 'The Birth of CORDIC,' Journal of VLSI Signal Processing, vol. 25, pp. 101-105, 2000. [57] J. S. Walther, 'A Unified Algorithm for Elementary Functions,' Conf. Proceedings, Spring Joint Computer Conference, pp. 379-385, May 1971. [58] J. S. Walther, 'The Story of Unified CORDIC,' Journal of VLSI Signal Processing, vol. 25, pp. 107-112, 2000. [59] Y. H. Hu, 'CORDIC-Based VLSI Architectures for Digital Signal Processing,' IEEE Signal Processing Magazine, vol. 25, pp. 16-35, Jul. 1992. [60] F. Lu, and H. Samueli, 'A 60-MBd, 480-Mb/s, 256-QAM Decision-Feedback Equalizer in 1.2-um CMOS,' IEEE J. of Solid-State Circuits, vol. 28, pp. 330-338, Mar. 1993. [61] J. W. Cooley, and J. W. Tukey, 'An Algorithm for the Machine Calculation of Complex Fourier Series,' Math. of Computation, vol. 19, no. 90, pp. 297-301, Apr. 1965. [62] K. Maharatna, E. Grass, and U. Jagdhold, 'A 64-point Fourier Transform Chip for High-Speed Wireless LAN Application Using OFDM,' IEEE J. of Solid-State Circuits, vol. 39, no. 3, pp. 484-493, Mar. 2004. [63] Y. W. Lin, H. Y. Liu, and C. Y. Lee, 'A 1-GS/s FFT/IFFT Processor for UWB Applications,' IEEE J. of Solid-State Circuits, vol. 40, no. 8, pp. 1726-1735, Aug. 2005. [64] T. Y. Chen, Y. H. Lin, C. F. Wu and C. K. Wang, 'Design and Analysis of Cost-Efficient IFFT/FFT Processor Chip for Wireless OFDM Systems,' IEEE Asia-Pacific Conf. on Circuits and Systems, pp. 1-4, Dec. 2010. [65] M. H. Hsieh and C. H. Wei, 'A Low-Complexity Frame Synchronization and Frequency Offset Compensation Scheme for OFDM Systems over Fading Channels,' IEEE Trans. on Vehicular Technology, vol. 48, no. 5, pp. 1596-1609, Sept. 1999. [66] User Guide of GFEC Stratix II F1020 DSP Development Board, Rev. 2.42, Galaxy Far East Corporation, Jan. 2007. [67] Chapter 17. Design Debugging Using the SignalTap II Logic Analyzer, Quartus II Handbook Ver. 10.0 Vol. 3: Verification, Altera Corporation, Jul. 2010. [68] Debugging Tools - SignalTap II Embedded Logic Analyzer, Altera Advance Training, Altera Corporation, 2008. [69] J. Y. Pang, User Guide of Pattern Generator and Logic Analyzer Using Agilent 16823A Logic Analyzer, Biomedical and Communication System IC Lab., National Central University, Jul, 2008. [70] Vector Signal Analysis Basics, Application Note 150-15, Agilent Technologies, Inc. [71] How to Measure Digital Baseband and IF Signals Using Agilent Logic Analyzers with 89600 Vector Signal Analysis Software, Application Note 1559, Agilent Technologies, Inc. [72] Using the Sample VBA Macros and Using the MatLab Tools, MatLab Tools Help, Agilent Technologies, Inc. [73] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, Prentice-Hall, 1998. [74] W. Y. Chen, DSL: Simulation Techniques and Standards Development for Digital Subscriber Line Systems, Macmillan Tech. Pub., 1998. [75] J. Khoury and H. Tao, 'Data Converters for Communication Systems,' IEEE Comm. Magazine, vol. 36, no. 10, pp. 113-117, Oct. 1998. [76] T. Hentschel, M. Henker and G. Fettweis, 'The Digital Front-End of Software Radio Terminals,' IEEE Personal Comm., vol. 6, no. 4, pp. 40--46, Aug. 1999. [77] J. A. C. Bingham, ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, Inc., 2000. [78] T. Starr, J. M. Cioffi and P. J. Silverman, Understanding Digital Subscriber Line Technology, Prentice Hall, Inc., 1999. [79] E. C. Ifeachor and B. W. Jervis, Digial Signal Processing - A Practical Approach, Addison-Wesley Pub., 1st ed., 1993. [80] B. Shim and N. R. Shanbhang, 'Complexity Analysis of Multicarrier and Single-Carrier Systems for Very High-Speed Digital Subscriber Line,' IEEE Trans. on Signal Processing, vol. 51, no. 1, pp. 282-292, Jan. 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26474 | - |
| dc.description.abstract | 本論文,主要是考量在多重路徑頻率選擇性通道(multipath frequency-selective fading channel)下,探討正交分頻多工(orthogonal frequency-division multiplexing, OFDM)基頻收發機的系統設計與驗證。另外,針對OFDM系統在追蹤階段(tracking stage),提出載波同步與通道等化之聯合演算法。此聯合演算法是根據最小均方誤差(minimum mean-square-error, MMSE)準則,定出其單一成本函數(cost function),可同時最小化子通道上的均方誤差,進而減弱載波頻率抖動(jitter)。基本上,聯合演算法包含了一個雙迴路(dual-loop)的載波同步與一個增益(gain)等化回路。此雙迴路是由內部(inner)迴路與外部(outer)迴路組成的架構。此外,針對硬體實現所造成迴路延遲(loop-delay),進而引起雙迴路的相關穩定度問題與迴路抖動對系統效能(performance)的影響,在此論文中都做了詳盡的探討與分析。針對AWGN與頻率選擇性通道的情況下,透過系統模擬驗證系統的分析,其結果可以顯示出聯合演算法不僅可以準確的估測與補償載波頻率偏移和通道等化,且具有成本效益的特色。在考量相關的演算法比較下,聯合演算法在乘法與加法運算上,可分別節省18.8%/57.2%與12.4%/49.1%的算術運算功率(computational power)。
考量聯合演算法的算術運算特性,針對OFDM基頻接收機,提出以CORDIC-based的超大型積體電架構設計,進而降低整個接收機的硬體複雜度。聯合演算法中其算術運算包含座標旋轉(coordinate rotation)、反正切(arctangent)、平方相加(square & addition)與平方根(square-root)、乘法與除法運算等。這些算術運算可以很簡單的透過控制單元,在不同的時間將CORDIC設定成相對應的組態,執行上述各個算術運算。此外,為了要得到合理的硬體設計,根據系統可接受的SNR損失下,針對OFDM系統的接收信號路徑作其定點分析。以Altera Stratix II EP2S180建立一個OFDM基頻接收機的FPGA原型機,驗證其相關的系統規格。在IEEE 802.11a且其載波偏移頻率(carrier frequency offset, CFO)為-232.2 KHz,64-QAM非編碼(uncoded)的最大傳送資料量72 Mbps下,其誤差向量振幅(error vector magnitude, EVM)的量測結果為-31.0 dB,且符合系統要求(<-25 dB)。 最後,以TSMC 0.18um 1P6M CMOS製程,完成此CORDIC-based超大型積體電路架構設計的OFDM基頻接收機的實體佈局。其晶片與核心面積分別為2.1 mm^2與1.2 mm^2。根據佈局後模擬(Post-layout simulation)的結果與Prime Time的估計,其總消耗功率在核心(core)電壓1.8 V、晶片輸入/輸出埠(I/O pad)電壓1.5 V與系統時脈40MHz的情況下為51 mW,其晶片核心消耗功率為33.2 mW。 | zh_TW |
| dc.description.abstract | In this dissertation, both design and evaluation of an OFDM baseband transceiver over the multipath frequency-selective fading channel are presented. Besides, a joint carrier synchronization synchronization and channel equalization algorithm is proposed for the OFDM baseband receiver in the tracking stage. Based on the minimum mean-square-error (MMSE) criterion, the cost function of the joint algorithm is addressed to concurrently minimize the MSE on each subchannel and to further lower the carrier frequency jitter. Basically, the carrier synchronization scheme with multirate processing is a dual-loop structure, which is composed of outer and inner loops. In particular, the closed-loop stability of the carrier synchronization loop is explored for the loop-delay induced by the hardware implementation. Many simulations are done for the additive
white Gaussian noise (AWGN) and the multipath frequency-selective fading channels to show that the joint algorithm not only accurately estimates and compensates the carrier frequency offset (CFO) and the channel impairment but also provides the cost-effective feature. Furthermore, the joint algorithm can save 18.8%/57.2% and 12.4%/49.1% of computational power in multiplication and addition operations compared with the considered algorithms. Considering the unique features of the joint algorithm, the COordinate Rotation DIgital Computer (CORDIC)-based VLSI architecture of OFDM baseband receiver is presented to further reduce the hardware complexity. Several arithmetic functions including coordicate rotation, arctangent, square & addition, square-root and multiplication and division, can be easily realized by configuring the rotation types and modes of CORDIC at different time slot. In order to obtain the reasonable hardware design, the fixed-point analyses of the received signal path for the OFDM baseband receiver are derived based on a restrictive SNR degradation. The FPGA prototyping of OFDM baseband receiver is evaluated by Altera Stratix II EP2S180 (F1020 C3) at 40 MHz system clock. In addition, the measurement of the error vector magnitude (EVM) for 64-QAM is -31.0 dB, which meets the required EVM (<-25 dB) for IEEE 802.11a system, under the maximum uncoded data rate 72 Mbps. Finally, the physical layout of the proposed CORDIC-based VLSI architecture for OFDM baseband received is fulfilled with TSMC 0.18um 1P6M CMOS technology. The chip area is 2.1 mm^2 and the core area is 1.2 mm^2. Besides, the total power consumption, estimated by Prime Time, is 51 mW @1.8V (core) and 3.3 V (pad) with 40 MHz system clock, and thus, the core power is 33.2 mW. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:11:39Z (GMT). No. of bitstreams: 1 ntu-100-D91943001-1.pdf: 24191568 bytes, checksum: 481c7c6b444352886fb7539d561c461c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Approval i
Acknowledgement v Chinese Abstract vii Abstract ix List of Figures xvii List of Tables xxv 1 Introduction 1 1.1 Current Status of Broadband Communication . . . . . . . . . . . . . . . 1 1.2 Overview of Carrier Synchronization and Channel Equalization Techniques 4 1.2.1 Carrier Synchronization Technique . . . . . . . . . . . . . . . . . 4 1.2.2 Channel Estimation Technique . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Joint Optimization for Equalization and Carrier Recovery in Digital Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Goal and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Principles of OFDM 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Orthogonal Frequency-Division Multiplexing . . . . . . . . . . . . . . . . 15 2.2.1 Guard Interval and Cyclic Extension . . . . . . . . . . . . . . . . 16 2.2.2 Choice of OFDM Parameter . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 OFDM Transceiver Architecture . . . . . . . . . . . . . . . . . . . 18 3 Baseband Channel Model 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Multipath Fading Channel . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . 30 3.3 Transmitter and Receiver Impairments . . . . . . . . . . . . . . . . . . . 30 3.3.1 Power Amplier Non-Linearity . . . . . . . . . . . . . . . . . . . 30 3.3.2 Carrier Frequency Oset (CFO) . . . . . . . . . . . . . . . . . . . 32 3.3.3 Timing Frequency Oset (TFO) . . . . . . . . . . . . . . . . . . . 33 3.3.4 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.5 I/Q Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.6 DC Oset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Joint Carrier Synchronization and Channel Equalization Algorithm 39 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Carrier Synchronization and Channel Equalization in OFDM Systems . . 40 4.2.1 Proles of Synchronization and Equalization Schemes . . . . . . . 40 4.2.2 Signal Model with CFO . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.3 ICI Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Brief Introduction of Frequency-Locked Loop . . . . . . . . . . . . 45 4.3.2 Review of Frequency Error Estimation . . . . . . . . . . . . . . . 46 4.3.3 Review of FLL-Based Carrier Synchronization Schemes . . . . . . 47 4.3.4 Review of Least-Square Channel Estimation and Adaptive Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Joint Carrier Synchronization and Channel Equalization Algorithm . . . 51 4.4.1 Equivalent Channel Response in Polar Coordinate . . . . . . . . . 52 4.4.2 MMSE Criterion and Subchannel SNR . . . . . . . . . . . . . . . 52 4.4.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 System Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5.1 Uncoded BER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5.2 Subchannel SNR and SDR . . . . . . . . . . . . . . . . . . . . . . 56 4.5.3 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . 58 5 Closed-Loop Derivation and Analysis of Joint Algorithm 59 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Multirate Carrier Synchronization Loop . . . . . . . . . . . . . . . . . . . 60 5.2.1 Error Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.2 Inner Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.3 Outer Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.4 Dual Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.5 Closed-Loop Stability . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.6 Closed-Loop Approximation and Design . . . . . . . . . . . . . . 68 5.3 Gain Equalization Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.4 Powers of Phase and Gain Jitters . . . . . . . . . . . . . . . . . . . . . . 70 5.4.1 Phase Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Gain Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 OFDM Transceiver System Design 73 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 System Specication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.1 Convolutional Coding . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.2 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.3 Constellation Mapping . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.4 Pilot Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.5 IFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.6 Windowing and Transmitted Filter . . . . . . . . . . . . . . . . . 80 6.4 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4.1 Received Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.2 Coarse Symbol Boundary Detection and Coarse CFO Acquisition 84 6.4.3 Fine Symbol Boundary Detection and Fine CFO Acquisition . . . 85 6.4.4 Joint Carrier Synchronization and Channel Equalization Algorithm 86 6.4.5 Deinterleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4.6 Convolutional Decoding . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7 CORDIC-Based VLSI Architecture Design and Fixed-Point Analysis 101 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.1 Features of CORDIC-Based VLSI Archtecture . . . . . . . . . . . 102 7.1.2 Design Flow and Evaluation Process . . . . . . . . . . . . . . . . 103 7.2 CORDIC-Based VLSI Architecture for OFDM Receiver . . . . . . . . . . 106 7.2.1 Overview of CORDIC . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2.2 CORDIC Operation Modes for OFDM Receiver . . . . . . . . . . 107 7.3 Finite Wordlength Analysis of Received Signal Path . . . . . . . . . . . . 113 7.3.1 Design Criteria of Finite Wordlength Analysis . . . . . . . . . . . 113 7.3.2 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . 118 7.3.3 Received Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.4 Derotator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.3.5 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.3.6 Gain and Phase Compensations . . . . . . . . . . . . . . . . . . . 133 7.3.7 Denormalization, Saturation, Slicer and Decision Error . . . . . . 136 7.3.8 GED and PED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3.9 Summary of Finite Wordlength Analysis . . . . . . . . . . . . . . 139 7.3.10 System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.4 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.4.1 CRM Module Design . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.4.2 CRM/CVM Module Design . . . . . . . . . . . . . . . . . . . . . 147 7.4.3 LRM/LVM Module Design . . . . . . . . . . . . . . . . . . . . . . 150 7.4.4 Slicer and Error Detector . . . . . . . . . . . . . . . . . . . . . . . 153 7.4.5 Gain and Phase Equalizers Design . . . . . . . . . . . . . . . . . . 154 7.4.6 FFT Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.4.7 Initialization of Symbol Boundary Detection and CFO Acquisition 165 7.4.8 System Integration and FSM Design . . . . . . . . . . . . . . . . 166 7.4.9 Saving in Hardware Complexity . . . . . . . . . . . . . . . . . . . 173 7.5 FPGA Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.5.1 FPGA Synthesis Result . . . . . . . . . . . . . . . . . . . . . . . 176 7.5.2 O-Line Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.5.3 Real-Time Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.6 Physical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8 Conclusion 195 | |
| dc.language.iso | en | |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | 載波同步 | zh_TW |
| dc.subject | 通道等化 | zh_TW |
| dc.subject | 坐標旋轉數位計算器 | zh_TW |
| dc.subject | 聯合演算法 | zh_TW |
| dc.subject | Carrier Synchronization | en |
| dc.subject | Joint Algorithm | en |
| dc.subject | CORDIC | en |
| dc.subject | Channel Equalization | en |
| dc.subject | OFDM | en |
| dc.title | 在多路徑頻率選擇性通道下使用聯合載波同步與通道等化演算法之OFDM收發機系統設計與其CORDIC-Based超大型積體電路架構設計 | zh_TW |
| dc.title | OFDM Transceiver System Design over Multipath Frequency-Selective Fading Channel Using Joint Carrier Synchronization and Channel Equalization Algorithm and Its CORDIC-Based VLSI Architecture Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 闕志達,鐘嘉德,陳光禎,吳安宇,周世傑,李鎮宜,王晉良 | |
| dc.subject.keyword | 正交分頻多工,載波同步,通道等化,坐標旋轉數位計算器,聯合演算法, | zh_TW |
| dc.subject.keyword | OFDM,Carrier Synchronization,Channel Equalization,CORDIC,Joint Algorithm, | en |
| dc.relation.page | 222 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 23.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
