Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26458
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorHsiao-Han Hsiehen
dc.contributor.author謝曉涵zh_TW
dc.date.accessioned2021-06-08T07:11:01Z-
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationAkakura, S., Singh, S., Spataro, M., Akakura, R., Kim, J.I., Albert, M.L., and Birge, R.B. (2004). The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Experimental cell research 292, 403-416.
Albert, M.L., Kim, J.I., and Birge, R.B. (2000). alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nature cell biology 2, 899-905.
Araki, N., Hatae, T., Furukawa, A., and Swanson, J.A. (2003). Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages. Journal of cell science 116, 247-257.
Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G., and Yayon, A. (1994). Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005-1013.
Barstead, R.J., and Waterston, R.H. (1989). The basal component of the nematode dense-body is vinculin. The Journal of biological chemistry 264, 10177-10185.
Barstead, R.J., and Waterston, R.H. (1991). Vinculin is essential for muscle function in the nematode. The Journal of cell biology 114, 715-724.
Battaglia, C., Mayer, U., Aumailley, M., and Timpl, R. (1992). Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. European journal of biochemistry / FEBS 208, 359-366.
Baum, P.D., and Garriga, G. (1996). ina-1 encodes an alpha integrin required for cell migration and morphogeneis. West Coast Worm Meeting.
Baum, P.D., and Garriga, G. (1997). Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 51-62.
Benian, G.M., Tinley, T.L., Kindt, R.M., and Blangy, A. (2000). UNC-89 is a putative muscle specific activator of rhoA. East Coast Worm Meeting.
Benian, G.M., Tinley, T.L., Tang, X., and Borodovsky, M. (1996). The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. The Journal of cell biology 132, 835-848.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Broday, L., Kolotuev, I., Didier, C., Bhoumik, A., Podbilewicz, B., and Ronai, Z. (2004). The LIM domain protein UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein RNF-5 in C. elegans. The Journal of cell biology 165, 857-867.
Brower, D.L. (2003). Platelets with wings: the maturation of Drosophila integrin biology. Current opinion in cell biology 15, 607-613.
Brown, J.C., Sasaki, T., Gohring, W., Yamada, Y., and Timpl, R. (1997). The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. European journal of biochemistry / FEBS 250, 39-46.
Brown, N.H. (2000). Cell-cell adhesion via the ECM: integrin genetics in fly and worm. Matrix Biol 19, 191-201.
Burke, R.D. (1999). Invertebrate integrins: structure, function, and evolution. International review of cytology 191, 257-284.
Chakravarti, S., Horchar, T., Jefferson, B., Laurie, G.W., and Hassell, J.R. (1995). Recombinant domain III of perlecan promotes cell attachment through its RGDS sequence. The Journal of biological chemistry 270, 404-409.
Chisholm, A.D., and Hardin, J. (2005). Epidermal morphogenesis. WormBook, 1-22.
Chung, S., Gumienny, T.L., Hengartner, M.O., and Driscoll, M. (2000). A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature cell biology 2, 931-937.
Conradt, B., and Horvitz, H.R. (1999). The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317-327.
Conradt, B., and Xue, D. (2005). Programmed cell death. WormBook, 1-13.
Cox, D., Berg, J.S., Cammer, M., Chinegwundoh, J.O., Dale, B.M., Cheney, R.E., and Greenberg, S. (2002). Myosin X is a downstream effector of PI(3)K during phagocytosis. Nature cell biology 4, 469-477.
Ellis, R.E., Jacobson, D.M., and Horvitz, H.R. (1991). Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94.
Francis, G.R., and Waterston, R.H. (1985). Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. The Journal of cell biology 101, 1532-1549.
Francis, R., and Waterston, R.H. (1991). Muscle cell attachment in Caenorhabditis elegans. The Journal of cell biology 114, 465-479.
Gettner, S.N., Kenyon, C., and Reichardt, L.F. (1995). Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. The Journal of cell biology 129, 1127-1141.
Gumienny, T.L., Brugnera, E., Tosello-Trampont, A.C., Kinchen, J.M., Haney, L.B., Nishiwaki, K., Walk, S.F., Nemergut, M.E., Macara, I.G., Francis, R., et al. (2001). CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41.
Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R., and Hengartner, M.O. (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development (Cambridge, England) 126, 1011-1022.
Hayashi, K., Madri, J.A., and Yurchenco, P.D. (1992). Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. The Journal of cell biology 119, 945-959.
Hedgecock, E.M., Sulston, J.E., and Thomson, J.N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science (New York, NY 220, 1277-1279.
Heremans, A., De Cock, B., Cassiman, J.J., Van den Berghe, H., and David, G. (1990). The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. The Journal of biological chemistry 265, 8716-8724.
Hoeppner, D.J., Hengartner, M.O., and Schnabel, R. (2001). Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202-206.
Hresko, M.C., Williams, B.D., and Waterston, R.H. (1994). Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. The Journal of cell biology 124, 491-506.
Hughes, A.L. (2001). Evolution of the integrin alpha and beta protein families. Journal of molecular evolution 52, 63-72.
Hutter, H., Vogel, B.E., Plenefisch, J.D., Norris, C.R., Proenca, R.B., Spieth, J., Guo, C., Mastwal, S., Zhu, X., Scheel, J., et al. (2000). Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science (New York, NY 287, 989-994.
Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554.
Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Iozzo, R.V., Cohen, I.R., Grassel, S., and Murdoch, A.D. (1994). The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. The Biochemical journal 302 ( Pt 3), 625-639.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology 2, RESEARCH0002.
Kimble, J., and Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental biology 70, 396-417.
Kinchen, J.M., Doukoumetzidis, K., Almendinger, J., Stergiou, L., Tosello-Trampont, A., Sifri, C.D., Hengartner, M.O., and Ravichandran, K.S. (2008). A pathway for phagosome maturation during engulfment of apoptotic cells. Nature cell biology 10, 556-566.
Laurie, G.W., Bing, J.T., Kleinman, H.K., Hassell, J.R., Aumailley, M., Martin, G.R., and Feldmann, R.J. (1986). Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. Journal of molecular biology 189, 205-216.
Lettre, G., and Hengartner, M.O. (2006). Developmental apoptosis in C. elegans: a complex CEDnario. Nature reviews 7, 97-108.
Lin, X., Qadota, H., Moerman, D.G., and Williams, B.D. (2003). C. elegans PAT-6/actopaxin plays a critical role in the assembly of integrin adhesion complexes in vivo. Curr Biol 13, 922-932.
Lu, Q., Zhang, Y., Hu, T., Guo, P., Li, W., and Wang, X. (2008). C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development (Cambridge, England) 135, 1069-1080.
Mackinnon, A.C., Qadota, H., Norman, K.R., Moerman, D.G., and Williams, B.D. (2002). C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 12, 787-797.
Mangahas, P.M., Yu, X., Miller, K.G., and Zhou, Z. (2008). The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. The Journal of cell biology 180, 357-373.
Meighan, C.M., and Schwarzbauer, J.E. (2007). Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes & development 21, 1615-1620.
Mercer, K.B., Flaherty, D.B., Miller, R.K., Qadota, H., Tinley, T.L., Moerman, D.G., and Benian, G.M. (2003). Caenorhabditis elegans UNC-98, a C2H2 Zn finger protein, is a novel partner of UNC-97/PINCH in muscle adhesion complexes. Molecular biology of the cell 14, 2492-2507.
Mercer, K.B., Miller, R.K., Tinley, T.L., Sheth, S., Qadota, H., and Benian, G.M. (2006). Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments. Molecular biology of the cell 17, 3832-3847.
Metzstein, M.M., Hengartner, M.O., Tsung, N., Ellis, R.E., and Horvitz, H.R. (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382, 545-547.
Miller, R.K., Qadota, H., Landsverk, M.L., Mercer, K.B., Epstein, H.F., and Benian, G.M. (2006). UNC-98 links an integrin-associated complex to thick filaments in Caenorhabditis elegans muscle. The Journal of cell biology 175, 853-859.
Miller, R.K., Qadota, H., Mercer, K.B., Gernert, K.M., and Benian, G.M. (2008). UNC-98 and UNC-96 Interact with Paramyosin to Promote Its Incorporation into Thick Filaments of Caenorhabditis elegans. Molecular biology of the cell 19, 1529-1539.
Moerman, D.G., and Williams, B.D. (2006). Sarcomere assembly in C. elegans muscle. WormBook, 1-16.
Norman, K.R., Cordes, S., Qadota, H., Rahmani, P., and Moerman, D.G. (2007). UNC-97/PINCH is involved in the assembly of integrin cell adhesion complexes in Caenorhabditis elegans body wall muscle. Developmental biology 309, 45-55.
Okkema, P.G., and Krause, M. (2005). Transcriptional regulation. WormBook, 1-40.
Olazabal, I.M., Caron, E., May, R.C., Schilling, K., Knecht, D.A., and Machesky, L.M. (2002). Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol 12, 1413-1418.
Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. (2001). Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-94.
Parrish, J.Z., and Xue, D. (2003). Functional genomic analysis of apoptotic DNA degradation in C. elegans. Molecular cell 11, 987-996.
Peden, E., Kimberly, E., Gengyo-Ando, K., Mitani, S., and Xue, D. (2007). Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes & development 21, 3195-3207.
Poinat, P., De Arcangelis, A., Sookhareea, S., Zhu, X., Hedgecock, E.M., Labouesse, M., and Georges-Labouesse, E. (2002). A conserved interaction between beta1 integrin/PAT-3 and Nck-interacting kinase/MIG-15 that mediates commissural axon navigation in C. elegans. Curr Biol 12, 622-631.
Priess, J.R., and Hirsh, D.I. (1986). Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Developmental biology 117, 156-173.
Qadota, H., Mercer, K.B., Miller, R.K., Kaibuchi, K., and Benian, G.M. (2007). Two LIM domain proteins and UNC-96 link UNC-97/pinch to myosin thick filaments in Caenorhabditis elegans muscle. Molecular biology of the cell 18, 4317-4326.
Reddien, P.W., and Horvitz, H.R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature cell biology 2, 131-136.
Riddle, D.L. (1997). C. elegans II (Plainview, N.Y., Cold Spring Harbor Laboratory Press).
Robertson, A., and Thomson, N. (1982). Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. J Embryol Exp Morphol 67, 89-100.
Rogalski, T.M., Mullen, G.P., Gilbert, M.M., Williams, B.D., and Moerman, D.G. (2000). The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. The Journal of cell biology 150, 253-264.
Rogalski, T.M., Williams, B.D., Mullen, G.P., and Moerman, D.G. (1993). Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes & development 7, 1471-1484.
Schwartz, H.T., and Horvitz, H.R. (2007). The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes & development 21, 3181-3194.
Singh, S., D'Mello, V., van Bergen en Henegouwen, P., and Birge, R.B. (2007). A NPxY-independent beta5 integrin activation signal regulates phagocytosis of apoptotic cells. Biochemical and biophysical research communications 364, 540-548.
Sulston, J.E., and Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental biology 56, 110-156.
Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology 100, 64-119.
Swanson, J.A., Johnson, M.T., Beningo, K., Post, P., Mooseker, M., and Araki, N. (1999). A contractile activity that closes phagosomes in macrophages. Journal of cell science 112 ( Pt 3), 307-316.
Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome biology 8, 215.
Thellmann, M., Hatzold, J., and Conradt, B. (2003). The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development (Cambridge, England) 130, 4057-4071.
Timmons, L., Court, D.L., and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112.
Tinley, T.L., Kindt, R., Baraldi, E., Kenyon, C., and Benian, G.M. (1999). UNC-89 participates in Rho-like signaling to organize thick filaments. International C elegans Meeting.
Tucker, M., and Han, M. (2008). Muscle cell migrations of C. elegans are mediated by the alpha-integrin INA-1, Eph receptor VAB-1, and a novel peptidase homologue MNP-1. Developmental biology 318, 215-223.
Wang, X., Wu, Y.C., Fadok, V.A., Lee, M.C., Gengyo-Ando, K., Cheng, L.C., Ledwich, D., Hsu, P.K., Chen, J.Y., Chou, B.K., et al. (2003). Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science (New York, NY 302, 1563-1566.
Wang, X., Yang, C., Chai, J., Shi, Y., and Xue, D. (2002). Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science (New York, NY 298, 1587-1592.
Waterston, R.H., Thomson, J.N., and Brenner, S. (1980). Mutants with altered muscle structure of Caenorhabditis elegans. Developmental biology 77, 271-302.
Whitelock, J.M., Graham, L.D., Melrose, J., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1999). Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 18, 163-178.
Williams, B.D., and Waterston, R.H. (1994). Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. The Journal of cell biology 124, 475-490.
Williams, B.D., and Waterston, R.H. (1995). The gene pat-2 codes for alpha-integrin and is critical for body wall muscle assembly. International C elegans Meeting.
Wu, Y.C., and Horvitz, H.R. (1998). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951-960.
Wu, Y.C., Stanfield, G.M., and Horvitz, H.R. (2000). NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes & development 14, 536-548.
Wu, Y.C., Tsai, M.C., Cheng, L.C., Chou, C.J., and Weng, N.Y. (2001). C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Developmental cell 1, 491-502.
Yu, X., Lu, N., and Zhou, Z. (2008). Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS biology 6, e61.
Yu, X., Odera, S., Chuang, C.H., Lu, N., and Zhou, Z. (2006). C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Developmental cell 10, 743-757.
Yurchenco, P.D., Cheng, Y.S., and Ruben, G.C. (1987). Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers. The Journal of biological chemistry 262, 17668-17676.
Zhou, Z., Hartwieg, E., and Horvitz, H.R. (2001). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26458-
dc.description.abstractIntegrins 是參與細胞黏合、細胞遷移、細胞週期、細胞分化與細胞凋亡等等細胞活動的由異分子組成的細胞表面受器。Integrins 在細胞吞噬過程中的功能已在細胞實驗中發現,但仍缺乏in vivo的證據。PAT-2是線蟲兩種α次分子中的一種,前人的研究發現PAT-2參與線蟲體壁肌肉肌節的形成,pat-2的功能喪失會造成胚胎體軸的延長停留在2-fold時期。我們發現在pat-2 loss-of-function (lf)的胚胎中,細胞屍體的數量比起野生型胚胎有顯著上升的情形。利用time-lapse microscopic recording進行分析,我們發現細胞屍體的數量上升是由於移除細胞屍體的過程受到影響所導致。目前已知在線蟲中有兩條細胞屍體的吞噬路徑,分別由ced-1、 ced-6、ced-7 與ced-2、ced-5、ced-12 組成。我們的研究發現pat-2並不作用在這兩條路徑中,而是與參與肌肉肌節的形成的基因成員一起作用以促進細胞屍體的吞噬。PAT-2在肌肉細胞專一性的表現能消除 pat-2(lf)的胚胎中細胞屍體數量上升的情形,而PAT-2在表皮細胞中的功能也在我們的研究中發現。以上結果顯示,PAT-2 integrin定義了一條新的細胞吞噬路徑,此路徑在肌肉細胞中扮演重要功能,並可能也作用在其他細胞種類。zh_TW
dc.description.abstractIntegrins are heterodimeric transmembrane receptors that function in cell adhesion, migration, cell cycle progression, differentiation and apoptosis. Its role in the phagocytosis of apoptotic cells has been shown in cultured mammalian cells but has not yet been characterized in vivo. There are two α subunits, PAT-2 and INA-1, and a sole β subunit, PAT-3, in C. elegans. PAT-2 is known to be essential for sarcomere assembly and pat-2 mutants arrested at the 2-fold stage when active muscle movements start. We found that in pat-2 loss-of -function embryos the number of cell corpses significantly increased when compared with that of wild type. A time-lapse microscopic recording showed that the increase of cell corpse number in the pat-2(st567) embryos was due to the failure of cell-corpse removal. C. elegans cell-corpse engulfment was previously shown to be mediated by two partially redundant pathways, ced-1, ced-6, ced-7 in one and ced-2, ced-5 and ced-12 in the other. Clustering of PAT-2 around cell corpses was not affected by ced-1 or ced-5 mutation. In addition, the pat-2 mutation further enhanced the single mutants or double mutants between the two pathways, suggesting that pat-2 may function in a third engulfment pathway. Like pat-2, other genes involved in the body wall muscle assembly also function of cell-corpse engulfment, likely in the same pathway with pat-2. Muscle-specific expression of pat-2 rescued the corpse-engulf-defect of pat-2 embryos. This result indicates that muscle cells, at least primarily, act as engulfing cells in the PAT-2-mediated engulfment process. We conclude that PAT-2 integrin defines a novel engulfment pathway in muscle cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:11:01Z (GMT). No. of bitstreams: 1
ntu-97-R95b43026-1.pdf: 4759937 bytes, checksum: 24782379e7ce5ff9dbf707d65f82c590 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 ..................................................................................................2
中文摘要 ..................................................................................................................3
Abstract ...................................................................................................................4
1. Introduction ...............................................................................................8
2. Material and method …………………………………………………14
2.1 C. elegans strains used ……………………………………………….……14
2.2 To maintain C. elegans ……………………………………….……………14
2.3 To identify cell corpse under DIC microscope ……………………….……14
2.4 RNAi experiments ………………………………………………….…...…14
2.5 Time-lapse recording with DIC microscopy ………….…………….……..15
2.6 Plasmid construction ………………………………………………….…...15
2.7 Transgenic animals ………………………………………………………...16
3. Results………………………………………………………………………17
3.1 The number of cell corpses increased in pat-2 embryos …………….......…17
3.2 Ced phenotype of pat-2 embryos was due to the failure of cell corpse removal ………………………………………………………………….…18
3.3 PAT-2 functioned in engulfing cells and surrounded cell corpses …………18
3.4 pat-2 may function in a novel engulfment pathway ……………………..…19
3.5 Genes involved in the muscle assembly pathway functioned together with pat-2 ………………………………………………………………………..20
3.6 Muscle cells acted as engulfing cells in the PAT-2-mediated engulfment process ……………………………………………………………….……..20
3.7 The major engulfment pathway in muscle differed from that in hypodermal cells …………………………………………………………………………21
4. Discussion ………………………………………………………………22
4.1 pat-2 acts in engulfing cells and defines a novel engulfment pathway ……………………………………………………………….…..22
4.2 pat-2 acts predominantly in muscle cells and also has minor roles in hypodermal cells during cell-corpse removal …………………………………….……...23
4.3 How does pat-2 pathway work during engulfment? …………………...……24
5. Reference …………………………………………………………………28
6. Figures and Tables ………………………………………………….….37
Figure 1. Embryos at different developmental stages and the morphology of cell corpses under Nomarski (DIC) optics …………………………….….37
Figure 2. A time-lapse microscopic recording showed that the timing and numbers of cell death events were not affected by pat-2(st567) ……………….…38
Figure 3. A time-lapse microscopic recording showed that the duration of cell corpses increased compared with that of wild-type embryos ……………....…39
Figure 4. A pat-2 cell corpse persisted longer with an abnormal morphological appearance ………………………………………………………...….40
Figure 5. PAT-2 co-localized with CED-1 around cell corpses ……..…….....…42
Figure 6. PAT-2 surrounded cell corpses ………………………………..…...…44
Figure 7. Localization of PAT-2 around cell corpses was not disrupted by ced-1 and ced-5 mutations . ……………………………………………….….…46
Figure 8. pat-2 was strongly expressed in body wall muscles (BWM) ………....47
Figure 9. MLC-3, the sole essential myosin light chain in C elegans, co-localized with PAT-2 around cell corpse ……………………………….……………49
Figure 10. Muscle cells were competent engulfing cells .………………………51
Figure 11. PAT-2 was expressed in hypodermal cells .…………………………52
Figure 12. ced-1 was expressed in muscles cells .………………………………53
Table 1. The number of cell corpses increased in pat-2(st567) embryos ………54
Table 2. Genomic DNA of pat-2 rescued both Pat and Ced phenotype of pat-2(st567) embryos ………………………………………………………………55
Table 3. The pat-2 mutation further enhanced the mutants in the two pathways ……………………………………………………………..56
Table 4. The pat-2 mutation further enhanced the double mutants between the two pathways ………………………………………………………….….57
Table 5. The number of cell corpses increased in mutants of genes involving in body wall muscle assembly ……………………………………………..…58
Table 6. Genes involved in the body wall muscle assembly pathway functioned together with pat-2 ……………………………………………..……59
Table 7. pat-2 primarily functioned in muscle cells ………………………...…60
Table 8. Duration of corpses of C1, C2, C3 cells ………………………...……61
Table 9. Muscle cell phenotype in Pat mutants …………………………......…62
dc.language.isoen
dc.titlePAT-2/ α Integrin定義吞噬死細胞的一條新遺傳路徑zh_TW
dc.titlePAT-2/ α Integrin Defines a Novel Engulfment Pathway Acting Predominantly in Muscle Cellsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦(Wei-Pang Huang),陳光超(Guang-Chao Chen)
dc.subject.keywordintegrin,PAT-2,細胞凋亡,細胞屍體,細胞吞噬,線蟲,zh_TW
dc.subject.keywordintegrin,PAT-2,programmed cell death,cell corpse,engulfment,C. elegans,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2008-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved