請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26452
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊立民 | |
dc.contributor.author | Ying-Chuen Lai | en |
dc.contributor.author | 賴瑩純 | zh_TW |
dc.date.accessioned | 2021-06-08T07:10:47Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-12 | |
dc.identifier.citation | 1.Arquier N, Geminard C, Bourouis M, et al. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 2008;7:333-8.
2.Sherwood NM, Tello JA, Roch GJ. Neuroendocrinology of protochordates: insights from Ciona genomics. Comp Biochem Physiol A Mol Integr Physiol 2006;144:254-71. 3.BAXTER RC. Circulating Levels and Molecular Distribution of the Acid-Labile Subunit of the High Molecular Weight Insulin-Like Growth Factor-Binding Protein Complex. J Clin Endocrinol Metab 1990;70:1347-53. 4.Ueki I, Ooi GT, Tremblay ML, Hurst KR, Bach LA, Boisclair YR. Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc Natl Acad Sci U S A 2000;97:6868-73. 5.Baxter RC, Martin JL. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity-labeling. Proc Natl Acad Sci U S A 1989;86:6898-902. 6.Baxter RC, Martin JL, Beniac VA. High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J Biol Chem 1989;264:11843-8. 7.Twigg SM, Baxter RC. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem 1998;273:6074-9. 8.Domene HM, Bengolea SV, Jasper HG, Boisclair YR. Acid-labile subunit deficiency: phenotypic similarities and differences between human and mouse. J Endocrinol Invest 2005;28:43-6. 9.Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol 1989;121:753-8. 10.Zapf J, Hauri C, Futo E, et al. Intravenously injected insulin-like growth factor (IGF) I/IGF binding protein-3 complex exerts insulin-like effects in hypophysectomized, but not in normal rats. J Clin Invest 1995;95:179-86. 11.Baxter RC, Twigg SM. Actions of IGF binding proteins and related proteins in adipose tissue. Trends Endocrinol Metab 2009;20:499-505. 12.Chan SS, Twigg SM, Firth SM, Baxter RC. Insulin-like growth factor binding protein-3 leads to insulin resistance in adipocytes. J Clin Endocrinol Metab 2005;90:6588-95. 13.Kim JW, Rhoads RP, Segoale N, Kristensen NB, Bauman DE, Boisclair YR. Isolation of the cDNA encoding the acid labile subunit (ALS) of the 150 kDa IGF-binding protein complex in cattle and ALS regulation during the transition from pregnancy to lactation. J Endocrinol 2006;189:583-93. 14.Morrison KM, Bidlingmaier M, Stadler S, Wu Z, Skriver L, Strasburger CJ. Sample pre-treatment determines the clinical usefulness of acid-labile subunit immunoassays in the diagnosis of growth hormone deficiency and acromegaly. Eur J Endocrinol 2007;156:331-9. 15.Khosravi MJ, Diamandi A, Mistry J, Krishna RG, Khare A. Acid-labile subunit of human insulin-like growth factor-binding protein complex: measurement, molecular, and clinical evaluation. J Clin Endocrinol Metab 1997;82:3944-51. 16.Yakar S, Rosen CJ, Bouxsein ML, et al. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J 2009;23:709-19. 17.Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y, LeRoith D. Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes 2003;52:2483-9. 18.Ueki I, Giesy SL, Harvatine KJ, Kim JW, Boisclair YR. The acid-labile subunit is required for full effects of exogenous growth hormone on growth and carbohydrate metabolism. Endocrinology 2009;150:3145-52. 19.Domene HM, Hwa V, Argente J, et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res 2009;72:129-41. 20.Domene HM, Bengolea SV, Martinez AS, et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med 2004;350:570-7. 21.Domene HM, Scaglia PA, Lteif A, et al. Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations. J Clin Endocrinol Metab 2007;92:4444-50. 22.Heath KE, Argente J, Barrios V, et al. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab 2008;93:1616-24. 23.Hwa V, Haeusler G, Pratt KL, et al. Total absence of functional acid labile subunit, resulting in severe insulin-like growth factor deficiency and moderate growth failure. J Clin Endocrinol Metab 2006;91:1826-31. 24.van Duyvenvoorde HA, Kempers MJ, Twickler TB, et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur J Endocrinol 2008;159:113-20. 25.Bang P, Fureman A-L, Nilsson A-L, et al. A novel missense mutation of the ALSIGF gene causing a L172F substitution in LRR6 is associated with short stature in two Swedish children homozygous or compound heterozygous for the mutation. Hormone Research 2009;72:86: Abstract, 8th Joint LWPES/ESPE Meeting, New York Sptember 9-12, 2009. 26.Gallego-Gómez E, Sánchez del Pozo J, Rojo J, et al. Novel compound heterozygous IGFALS mutation associated with impaired postnatal growth and low circulating IGF-I and IGFBP-3 levels. Abstract, 8th Joint LWPES/ESPE Meeting, New York Sptember 9-12, 2009 2009;72:90: Abstract, 8th Joint LWPES/ESPE Meeting, New York Sptember 9-12, 2009. 27.Kirsch S, Koltin D, J. H. Continuous sc nightly infusion of IGF-1 stimulates growth in an acid labile subunit deficiency. Abstract, 8th Joint LWPES/ESPE Meeting, New York Sptember 9-12, 2009 2009;72:200: Abstract, 8th Joint LWPES/ESPE Meeting, New York Sptember 9-12, 2009. 28.David A, Rose SJ, Miraki-Moud F, et al. Acid-labile subunit deficiency and growth failure: description of two novel cases. Horm Res Paediatr 2010;73:328-34. 29.Domene HM, Hwa V, Jasper HG, Rosenfeld RG. Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab 2011;25:101-13. 30.Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 2008;454:470-7. 31.Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004;351:1106-18. 32.Lehrke M, Lazar MA. The many faces of PPARgamma. Cell 2005;123:993-9. 33.Belfiore A, Genua M, Malaguarnera R. PPAR-gamma Agonists and Their Effects on IGF-I Receptor Signaling: Implications for Cancer. PPAR Res 2009;2009:830501. 34.Fritton JC, Kawashima Y, Mejia W, et al. The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. J Biol Chem 2010;285:4709-14. 35.林文星. 胰島素阻抗性,糖尿病,肥胖:由差異呈現法至分子遺傳學的研究. 國立臺灣大學/分子醫學研究所/89/博士/089NTU01538015 指導教授:莊立民. 36.Lin WH, Chang HM, Tai TY, Chuang LM. Effect of thiazolidinedione on gene expression in NIH3T3–L1 adipocytes (Abstract). Diabetes 1999;48:A217. 37.Lecka-Czernik B, Ackert-Bicknell C, Adamo ML, et al. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 2007;148:903-11. 38.Belli SH, Graffigna MN, Oneto A, Otero P, Schurman L, Levalle OA. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. Fertil Steril 2004;81:624-9. 39.Iida K, Rosen CJ, Ackert-Bicknell C, Thorner MO. Genetic differences in the IGF-I gene among inbred strains of mice with different serum IGF-I levels. J Endocrinol 2005;186:481-9. 40.Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002;25:376-80. 41.Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. 42.Emoto M, Nishizawa Y, Maekawa K, et al. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 1999;22:818-22. 43.Stumvoll M, Mitrakou A, Pimenta W, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000;23:295-301. 44.Wallace TM, Levy JC, Matthews DR. Use and Abuse of HOMA Modeling. Diabetes Care 2004;27:1487-95. 45.Expert Panel on Detection E, Adults ToHBCi. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA: The Journal of the American Medical Association 2001;285:2486-97. 46.Tan C-E, Ma S, Wai D, Chew S-K, Tai E-S. Can We Apply the National Cholesterol Education Program Adult Treatment Panel Definition of the Metabolic Syndrome to Asians? Diabetes Care 2004;27:1182-6. 47.Holl K, Lundin E, Kaasila M, et al. Effect of long-term storage on hormone measurements in samples from pregnant women: the experience of the Finnish Maternity Cohort. Acta Oncol 2008;47:406-12. 48.Ramon C. Littell GAM, Walter W. Stroup, RussellD. Wolfinger, Oliver Schabenberger. SAS for Mixed Models. Cary, NC SAS Institute Inc 2006. 49.Clemmons DR. The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. The Journal of Clinical Investigation 2004;113:25-7. 50.Franco C, Bengtsson BA, Johannsson G. The GH/IGF-1 Axis in Obesity: Physiological and Pathological Aspects. Metab Syndr Relat Disord 2006;4:51-6. 51.Gram IT, Norat T, Rinaldi S, et al. Body mass index, waist circumference and waist-hip ratio and serum levels of IGF-I and IGFBP-3 in European women. Int J Obes (Lond) 2006;30:1623-31. 52.Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4:611-7. 53.Wada K, Kamisaki Y. [Anti-inflammatory effect of PPARgamma agonists: basics and clinical applications]. Nippon Rinsho 2010;68:278-83. 54.Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. PLoS Genet 2007;3:e64. 55.Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI, Group ftRCTS. Rosiglitazone Monotherapy Is Effective in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology & Metabolism 2001;86:280-8. 56.Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J. A Randomized Trial of Rosiglitazone Therapy in Patients With Inadequately Controlled Insulin-Treated Type 2 Diabetes. Diabetes Care 2001;24:1226-32. 57.Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003;46:3-19. 58.Prentice RL, Paczesny S, Aragaki A, et al. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome Med 2010;2:48. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26452 | - |
dc.description.abstract | Object: To determine the effect of rosiglitazone on acid labile subunit expression in adipocyte and type 2 diabetes patients after activation of peroxisome proliferator-activated receptor-γ
Background: Acid-labile subunit (ALS) is crucial protein for maintaining the insulin-like growth factor (IGF) system. Recently, ALS was found to control animal growth as well as carbohydrate and fat metabolism. The aim of the study was to evaluate the change of ALS expression in adipocyte and human with type 2 diabetes after rosiglitazone treatment. Methods: Hep3B and 3T3-L1 were used after two generation of subculture. 3T3-L1 was inducted in adipocyte in adipogenic media. ALS expression was evaluated by Western blot and reverse transcription-PCR every day during adipocytes differentiation. Rosiglitazone treatment (4.5 μM) of differentiated adipocyte was analyzed. Subcutaneous and omental adipose tissues were obtained from 104 subjects during weight reduction surgery and other abdominal surgery. IGFALS mRNA expression was analyzed by real-time PCR. To evaluate whether rosiglitazone affected circulating ALS in humans, we measured serum ALS concentration at three time points over 24 weeks in 61 diabetic subjects randomized to either Rosiglitazone (2mg/d) or placebo (30 in the treatment group and 31 in the placebo group). Additional time point was measured 4 weeks after discontinuation of drug. Results: In vitro, ALS expression was up-regulated during adipocyte differentiation and reduced by rosiglitazone. Omental IGFALS mRNA expression correlated with BMI, total cholesterol, triglyceride, HOMA2 %B, hsCRP and adiponectin. Adjusted IGFALS mRNA expression increased in subjects with metabolic syndrome (p=0.047).In human study, serum ALS concentration significantly correlated with age, gender, body mass index (BMI), and triglyceride. HbA1c and fasting plasma glucose decreased within group over the time (Ptrend=0.0003 and Ptrend=0.0004, respectively). BW, BMI, total cholesterol, low-density lipoprotein cholesterol, and HOMA2 %B significantly increased in treatment group (Ptrend<0.0001, Ptrend<0.0001,Ptrend=0.0001, Ptrend=0.0004 and Ptrend=0.0113 respectively). Overall, rosiglitazone did not decrease ALS serum concentration (Ptrend=0.4741). In subgroup analysis, rosiglitazone decreased ALS in the group with middle tertile (1551, 67mU/ml>ALS≥1071.16 mU/ml) of baseline ALS concentration (Adjusted Ptrend=0.0468). Multivariate linear regression analysis showed change of serum ALS correlated with rosiglitazone treatment, age, and variation of body weight, total cholesterol, HbA1c, and fasting plasma insulin. Conclusion: ALS expression is up-regulated during adipocyte differentiation. IGFALS mRNA expression also correlates with risk factors of metabolic syndrome. Rosiglitazone suppresses ALS expression in vitro and in vivo. This change may be related to age, change of glycaemia, hyperinsulinemia and adiposity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:10:47Z (GMT). No. of bitstreams: 1 ntu-100-P98421009-1.pdf: 2093407 bytes, checksum: 30034f1fef5efd82f547af278f816abb (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………i
誌謝……………………………………………………………… ii 中文摘要 ……………………………………………………… iii 英文摘要 ………………………………………………………… v 碩士論文內容 第一章 緒論……………………………………………………… 1 1.1.簡介Acid Labile Subunit …………………………………1 1.2.IGFALS基因剔除鼠在體型、骨骼、及代謝上的變化………2 1.3.人類因IGFALS基因突變導致缺乏ALS時的表現 ……………2 1.4.PPAR-gamma與IGF system的相關性及實驗假說……………4 第二章 研究方法與材料 ………………………………………6 2.1. 研究fibroblast分化成adipocyte過程中ALS的表現 … 6 2.1.1. 細胞培養(Cell Culture) ……………………6 2.1.2. 西方墨點法分析法(Western Immunoblotting) ……6 2.1.3. Reverse transcription-PCR …………………………7 2.2. 研究人類脂肪細胞ALS表現量與代謝症候群的相關性……8 2.2.1. 脂肪組織來源 ……………………………………………8 2.2.2. Real-time PCR……………………………………………8 2.2.3. 血液生化指標檢查 ………………………………………9 2.2.4. 胰島素敏感性及Beta-cell function評估方式 ………9 2.2.3. 代謝症候群的定義………………………………………10 2.3. 研究第2型糖尿病患在使用rosiglitazone後血清中ALS濃度的變化……11 2.3.1. 血清檢體來源……………………………………………11 2.3.2. 受試者選擇標準(Patient eligibility) …………11 2.3.3. 各項血液生化指標檢查…………………………………12 2.4. 統計分析…………………………………………………13 第三章. 結果 ……………………………………………………14 第四章. 討論 ……………………………………………………16 第五章. 展望 ……………………………………………………20 第六章. 英文論文簡述(summary) …………………………21 參考文獻 …………………………………………………………33 圖表 ………………………………………………………………40 圖一、 ………………………………………………………40 圖二、 ………………………………………………………41 圖三、 ………………………………………………………42 圖四、 ………………………………………………………43 圖五、 ………………………………………………………44 圖六、 ………………………………………………………45 表一、 ………………………………………………………46 表二、 ………………………………………………………47 表三、 ………………………………………………………48 表四、 ………………………………………………………49 表五、 ………………………………………………………50 表六、 ………………………………………………………51 | |
dc.language.iso | zh-TW | |
dc.title | 在脂肪細胞及第2型糖尿病患使用 Rosiglitazone活化Peroxisome Proliferator-Activated Receptor-γ後對Acid Labile Subunit表現量的影響 | zh_TW |
dc.title | To Determine the Effect of Rosiglitazone on Acid Labile Subunit Expression in Adipocyte and Type 2 Diabetes Patients after Activation of Peroxisome Proliferator-Activated Receptor-γ | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高嘉宏,黃瑞仁 | |
dc.subject.keyword | acid labile subunit,類胰島素生長因子,糖尿病,代謝症候群,adiponectin, | zh_TW |
dc.subject.keyword | acid labile subunit,ALS,insulin-like growth factor,diabetes mellitus,metabolic syndrome,adiponectin, | en |
dc.relation.page | 51 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。