Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李後晶(How-Jing Lee)
dc.contributor.authorLu-Kun Huangen
dc.contributor.author黃稑焜zh_TW
dc.date.accessioned2021-06-08T07:09:39Z-
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citationBoothroyd, C. E., Wijnen, H., Naef, F., Saez, L. and Young, M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. Plos Genetics 3.
Busza, A., Murad, A. and Emery, P. (2007). Interactions between circadian neurons control temperature synchronization of Drosophila behavior. Journal of Neuroscience 27, 10722-10733.
Dreisig, H. and Nielsen, E. T. (1971). Circadian rhythm of locomotion and its temperature dependence in Blattella-germanica. Journal of Experimental Biology 54, 187-198.
Evans, K. J. (1966). Responses of locomotor activity rhythms of lizards to simultaneous light and temperature cycles. Comparative Biochemistry and Physiology 19, 91-103.
Foa, A. and Bertolucci, C. (2001). Temperature cycles induce a bimodal activity pattern in ruin lizards: Masking or clock-controlled event? A seasonal problem. Journal of Biological Rhythms 16, 574-584.
Glaser, F. T. and Stanewsky, R. (2005). Temperature synchronization of the Drosophila circadian clock. Current Biology 15, 1352-1363.
Hong, C. I., Conrad, E. D. and Tyson, J. J. (2007). A proposal for robust temperature compensation of circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America 104, 1195-1200.
Hsieh, F., Chen, S.-C. and Lee, H.-J. (2008). Computing Circadian Rhythmic Patterns and Beyond Introduction to a New Non-Fourier Analysis. Manuscript submitted for publication.
Joshi, D. and Chandrashekaran, M. K. (1982). Daylight dimmer than starlight entrains the circadian-rhythm of a bat. Naturwissenschaften 69, 192-193.
Lin, T. M. and Lee, H. J. (1996). The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L). Chronobiology International 13, 81-91.
Liu, Y., Merrow, M., Loros, J. J. and Dunlap, J. C. (1998). How temperature changes reset a circadian oscillator. Science 281, 825-829.
Lopez-Olmeda, J. F., Madrid, J. A. and Sanchez-Vazquez, F. J. (2006). Light and temperature cycles as Zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiology International 23, 537-550.
Miyasako, Y., Umezaki, Y. and Tomioka, K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. Journal of Biological Rhythms 22, 115-126.
Pittendrigh, C. S. (1954). On temperature independence in the clock system controlling emergence time in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 40, 1018-1029.
Rence, B. and Loher, W. (1975). Arrhythmically singing crickets - thermoperiodic reentrainment after bilobectomy. Science 190, 385-387.
Rence, B. G. (1984). A comparison of light and temperature entrainment - evidence for a multioscillator circadian system. Physiological Entomology 9, 215-227.
Rensing, L. and Ruoff, P. (2002). Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiology International 19, 807-864.
Takeuchi, T., Hinohara, T., Kurosawa, G. and Uchida, K. (2007). A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles. Journal of Theoretical Biology 246, 195-204.
Tomioka, K., Sakamoto, M., Harui, Y., Matsumoto, N. and Matsumoto, A. (1998). Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. Journal of Insect Physiology 44, 587-596.
Weinert, D. and Waterhouse, J. (2007). The circadian rhythm of core temperature: Effects of physical activity and aging. Physiology & Behavior 90, 246-256.
Wheeler, D. A., Hamblencoyle, M. J., Dushay, M. S. and Hall, J. C. (1993). Behavior in light dark cycles of Drosophila mutants that are arrhythmic, blind, or both. Journal of Biological Rhythms 8, 67-94.
Yoshii, T., Heshiki, Y., Ibuki-Ishibashi, T., Matsumoto, A., Tanimura, T. and Tomioka, K. (2005). Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. European Journal of Neuroscience 22, 1176-1184.
Yoshii, T., Sakamoto, M. and Tomioka, K. (2002). A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zoological Science 19, 841-850.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26421-
dc.description.abstract不只是光線,溫度也能夠同步德國蜚蠊 (Blattella germanica) 的日週期性時鐘。在經設計的行為實驗下,我們證實了在日週期性活動背後,存在特殊的溫度依變時鐘。溫度、光線時鐘分別受對應的環境時間訊息校正,不僅都能夠獨立觸發週期性的活動行為,還可以協同運作。若將德國蜚蠊雄蟲置於恆溫的條件下,一如其夜行性的特徵,都只能夠在暗期或相對暗期 (subjective night) 觀察到一個活動高峰。然而若在恆暗下施予週期性溫度變化 (30:20°C),除了原來相對暗期 (對應:冷期) 的活動,還能夠在熱期 (對應:相對亮期) 發現新的高峰。溫度時鐘不僅能夠觸發兩個新的活動高峰 (在溫度轉換時),還能與同時在自由律動中的光線時鐘在活動交會後重新協調。雖然兩個時鐘都有機會主導活動的走向,但考慮無光暗時間訊息的校正條件,光線時鐘顯然略勝一籌。本研究直接證明了日週期性系統實為分工合作的多個時鐘,而不僅僅是以元件應對溫度條件,為機制探討提供了迥異於當今研究的行為基礎。zh_TW
dc.description.abstractNot only light, but also temperature can synchronize the circadian clock of German cockroach (Blattella germanica). By manipulating environmental conditions, we have proved a unique thermal clock underlying rhythmic locomotion behavior. Thermal and Photoperiodic clock may exert its own influence on the overt rhythm simultaneously, but can also couple forces for a proper phase. For male German cockroach, the locomotor circadian rhythm with only one peak of daily activity was found under constant temperature and LD or DD condition, which was restricted in scotophase or subjective night as a nocturnal animal does. However, a thermal cycle (30:20°C) under constant darkness, might switch the active phase from cold (subjective night) into warm (subjective day) phase, under which caused the presenting of multiple activity peaks. Two of the three peaks were triggered by the thermal clock at the transition of temperature, in the mean time, the photo clock kept a free-running rhythm, and would couple again with the thermal clock when activity peaks were getting closer. Although both clocks share the same opportunity in leading the activity pattern either in synchrony or free-running, the DD condition insinuate the power of photo clock. This finding provides direct evidence of a cooperative multiple-oscillator system for different zeitgebers, and also a novel behavioral basis from current studies on circadian mechanism.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:09:39Z (GMT). No. of bitstreams: 1
ntu-97-R95632014-1.pdf: 389057 bytes, checksum: eff8aa2d122210dcc32193d66dd20436 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents02 ACKNOWLEDGEMENTS
03 中文摘要
04 ABSTRACT
08 LIST OF FIGURES
01 INTRODUCTION
03 MATERIALS AND METHODS
05 RESULTS
05 The mono-peak rhythm of circadian locomotor activities in the German cockroach
06 Temperature compensation of circadian locomotion in period and quantity
07 Thermoperiod effects: bimodal entrainment but disturbance
08 The splitting pattern by photo- and thermal clocks
11 Coupling of the two clocks
13 DISSCUSSION
13 Evidence of another clock
14 Comparative study between photo- and thermal clocks
15 Running model of the thermal clock
17 REFFERENCES
dc.language.isoen
dc.title德國蜚蠊的日週期性溫度依變時鐘zh_TW
dc.titleSecondary circadian clock: Thermal clock of the German cockroachen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊恩誠(En-Cheng Yang),林金盾(Jin-Tun Lin),謝復興(Fu-Shing Hsieh)
dc.subject.keyword生物時鐘,日週律動,溫度週期,溫度補償,變溫動物,昆蟲,蟑螂,zh_TW
dc.subject.keywordnon-photic zeitgeber,thermoperiod entrainment,thermophase cryophase,temperature compensation,pacemaker coupling,aftereffect,heterothermic invertebrate,ectothermic insect,en
dc.relation.page20
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
379.94 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved