請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳銘堯(Ming-Yau Chern) | |
dc.contributor.author | Ching-Jong Chen | en |
dc.contributor.author | 陳慶鍾 | zh_TW |
dc.date.accessioned | 2021-06-08T07:09:33Z | - |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-01 | |
dc.identifier.citation | Chapter 1
[1] Rao C N R, Deepak F L, Gundiah G and Govindaraj A 2003 Prog. Solid State Chem. 3 15 [2] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353 [3] Lu J G, Chang P and Fan Z 2006 Mater. Sci. Eng. R 52 49 [4] Nguyen P, Ng H T, Yamada T, Smith M K, Li J, Han J and Meyyapan M 2004 Nano Lett. 4 651 [5] Wan Q, Wei M, Zhi D, MacManus-Driscoll J L and Blamire M G 2006 Adv. Mater. 18 234 [6] Kim H W, Myung J H, Shim S H and Hwang W S 2006 Mater. Sci. Forum 518 143 [7] Kim H W, Kim N H and Lee C 2005 Appl. Phys. A 81 1135 [8] Li C, Zhang D, Han S, Liu X, Tang T and Zhou C 2003 Adv. Mater. 15 143 [9] Cheng Z, Dong X, Pan Q, Zhang J and Dong X 2006 Mater. Lett. 60 3137 [10] Li S Q, Liang Y X, Wang C, Fu X Q and Wang T H 2006 Appl. Phys. Lett. 88 163111 [11] Liang Y X, Li S Q, Nie L, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 88 193119 [12] Nguyen P, Ng H T, Kong J, Cassell A M, Quinn R, Li J, Han J, McNeil M, and Meyyappan M 2003 Nano Lett. 3 925 [13] Liang C, Meng G, Lei Y, Phillipp F and Zhang L 2001 Adv. Mater. 13 1330 [14] Kalyanikutty K P, Gundiah G, Edem C, Govindaraj A and Rao C N R 2005 Chem. Phys. Lett. 408 389 [15] Chern M Y, Huang Y C and Xu W L 2007 Thin Solid Film 515 7866 [16] González G B, Mason T O, Quintana J P, Warschkow O, Ellis D E, Hwang J H, Hodges J P and Jorgensen J D 2004 J. Appl. Phys. 96 3912 [17] González G B, Cohen J B, Hwang J H, Mason T O, Hodges J P and Jorgensen J D 2001 J. Appl. Phys. 89 2550 Chapter 2 [1] Lu J G, Chang P and Fan Z 2006 Mater. Sci. Eng. R 52 49 [2] Wu Y and Yang P 2001 J. Am. Chem. Soc. 123 3165 [3] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353 Chapter 3 [1] http://mse.iastate.edu/microscopy/path2.html [2] Hitachi 4700 FE-SEM instruction manual [3] http://mse.iastate.edu/microscopy/beaminteractions.html [4] http://www.unl.edu/CMRAcfem/temoptic.htm [5] D. Keith Bowen, Brian K. Tanner,“High resolution X-ray diffractometry and topography”, Taylor&Francis Inc., (1998) [6] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897 [7] Chern M Y, Huang Y C and Xu W L 2007 Thin Solid Film 515 7866 Chapter 4 [1] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353 [2] T. B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak Binary alloy phase diagrams ASM International, Ohio, 1990 [3] Chen X L, Lan Y C, Li J Y, Gao Y G and He M 2001 J. Cryst. Growth 222 586 [4] Chen X L, Li J Y, Lan Y C and Cao Y G 2001 Mod. Phys. Lett. B 15 27 [5] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 [6] Hao Y F, Meng G W, Ye C H and Zhang L D 2005 Cryst. Growth Des. 4 1617 [7] Yan Y, Zhang Y, Zeng H, Zhang J, Cao X and Zhang L 2007 Nanotechnology 18 175601 [8] Wang Z L 2000 J. Phys. Chem. B 104 1153 [9] Wei M, Zhi D and MacManus-Driscoll J L 2006 Nanotechnology 17 3523 [10] Ye C, Fang X, Hao Y, Teng X and Zhang L 2005 J. Phys. Chem. B 109 19758 [11] Shi M R, Xu F, Yu K, Fang J H and Ji X M 2008 Appl. Phys. A 90 113 [12] Chen X L, Lan Y C, Li J Y, Gao Y G and He M 2001 J. Cryst. Growth 222 586 [13] Chen X L, Li J Y, Lan Y C and Cao Y G 2001 Mod. Phys. Lett. B 15 27 [14] Gao T and Wang T 2004 J. Phys. Chem. B 108 20045 [15] Chern M Y, Huang Y C, and Xu W L 2007 Thin Solid Film 515 7866 Chapter 5 [1] Dai L, Chen X L, Jlan J K, He M, Zhou T and Hu B Q 2002 Appl. Phys. A 75 687 [2] Zhang J, Qing X, Jiang F and Dai Z 2003 Chem. Phys. Lett. 371 311 [3] Cao H, Qiu X, Liang Y, Zhu Q and Zhao M 2003 Appl. Phys. Lett. 83 761 [4] Zhang D H, Li C, Han S, Liu X L, Tang T, Jin W and Zhou C W 2003 Appl. Phys. Lett. 82 112 [5] Liang C, Meng G, Lei Y, Phillipp F and Zhang L 2001 Adv. Mater. 13 1330 [6] Guha P, Kar S and Chaudhuri S 2004 Appl. Phys. Lett. 85 3851 Chapter 7 [1] Cheng T C, Hsu K H, Chen P Y, Huang W J, Wu J S, Hsueh H T and M N Chang 2007 Nanotechnology 18 225503 [2] http://nanoink.net/d/appnote_C-AFM.pdf [3] Yamazoe N 1991 Sens. Actuators B 5 7 [4] Comini E 2006 Analytica Chimica Acta 568 28 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26418 | - |
dc.description.abstract | 本文主要探討如何利用碳熱還原法在氧化鋁基板上生長出具垂直方向性的氧化銦奈米線,並藉由環境因子的調控,成長出六角形和方形兩種截面的奈米線,其外貌形態和結晶結構可使用X光繞射儀、掃描式和穿透式電子顯微鏡三種儀器來研究,在分析後,我們發現六角形和方形截面奈米線的結晶生長方向分別為[111]和[001],其形成原因可以兩者過飽和濃度的不同來解釋,另一方面,我們結合氣-液-固和氣-固成長力學來討論奈米線的非均勻徑長現象,這些相關生長力學的分析,在未來將有助於奈米線合成的調控能力。進一步,我們也針對六角形截面奈米線做光激發螢光光譜的探討,室溫光譜顯示奈米線在378奈米的波長有一道半高寬很窄的紫外光釋出,相對於其他文獻記載,我們的結果偏短,原因可能是低溫製程造成的低氧缺陷,另外,隨著溫度降至7K,378奈米螢光分裂成368和374奈米兩道紫外光,在長波長的波段,則產生602和648奈米兩道紅光,這四道光的成因都可歸因於氧缺陷所造成的靠近導帶或深階施子能階,進一步改良氧化銦奈米線的發光性質,未來將有助於在紫外光波段的光電應用。 | zh_TW |
dc.description.abstract | The controllable vertically-aligned indium oxide nanowires with hexagonal and square cross-sections were grown on a-plane sapphire substrate by the method of carbothermal reduction. The morphologies and crystalline structures were characterized by x-ray diffraction, scanning electron microscopy and transmission electron microscopy. After analyses, the nanowires with hexagonal cross-sections grew in [111] direction, and those with square cross-sections grew in [001] direction. The concept of supersaturation concentration is proposed to explain the formation of two kinds of vertically-aligned nanowires on the same substrate. The tapering property of nanowires is discussed by using vapor-liquid-solid and vapor-solid growth mechanisms. The growth mechanism analyses are very valuable in understanding the growth process of reagent source in the vapor route and Au catalyst, which is crucial to realize the controlled growth of vertical nanowires. Besides, the room-temperature photoluminescence spectrum of the hexagonal cross-section nanowires showed a single narrow UV emission at 378 nm, indicating the reduction of oxygen deficiencies. Furthermore, temperature-dependent photoluminescence measurement of the nanowires revealed two UV emissions (368 nm and 374 nm) and two long-wavelength emissions (602 nm and 648 nm). The near band edge emissions and deep level donors related to oxygen vacancies are proposed to explain the luminescence mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:09:33Z (GMT). No. of bitstreams: 1 ntu-97-D92222020-1.pdf: 3969745 bytes, checksum: d9956f8b3658a770a873eb2c9ba285ae (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Table of Contents
謝辭.................................................. I 中文摘要……………………………………………………………II 英文摘要…………………………………………………………III 目錄…………………………………………………………………V 圖目錄……………………………………………………………VII 表目錄………………………………………………………………XI Chapter 1 Introduction 1.1 Motivation……………………………………………………1 1.2 The structure of In2O3……………………………………6 Chapter 2 Synthesis method 2.1 Generic methods……………………………………………10 2.2 Our synthesis method……………………………………13 Chapter 3 Morphology and structure 3.1 Principles of instruments………………………………16 3.2 Results and discussions…………………………………27 Chapter 4 Growth mechanism 4.1 Standard growth model…………………………………43 4.2 Growth model of the tapering In2O3 nanowires……47 Chapter 5 Photoluminescence measurement 5.1Principle…………………………………………………53 5.2 Quantum confinement effect…………………………55 5.3 Experimental setup……………………………………55 5.4 Results and discussions……………………………56 Chapter 6 Conclusion Chapter 7 Future work 7.1 Field-emission properties of an In2O3 nanowire…64 7.2 Electronic transport studies of an In2O3 nanowire by conductive atomic force microcopy (C-AFM)……………65 7.3 Gas sensor…………………………………………………66 | |
dc.language.iso | en | |
dc.title | 具垂直方向性的氧化銦奈米線:晶向調控及光學性質研究 | zh_TW |
dc.title | Orientation-Controlled Synthesis and Optical Properties of
Vertical Indium Oxide Nanowires | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳政維(Jeng-Wei Chen),郭光宇(Guang-Yu Guo),梁啟德(Chi-Te Liang),陳永芳(Yang-Fang Chen) | |
dc.subject.keyword | 碳熱還原法,過飽和濃度,氣-液-固成長力學,氣-固成長力學,光激發螢光,深階施子, | zh_TW |
dc.subject.keyword | carbothermal reduction,supersaturation concentration,vapor-liquid-solid,vapor-solid,photoluminescence,near band edge,deep level donors, | en |
dc.relation.page | 69 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。