Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金傳春
dc.contributor.authorChang-Chun Leeen
dc.contributor.author李昌駿zh_TW
dc.date.accessioned2021-06-08T07:08:56Z-
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citationAlexander, D.J. (2007a) An overview of the epidemiology of avian influenza. Vaccine 25(30), 5637-44.
Alexander, D.J. (2007b) Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006. Avian Dis 51(1 Suppl), 161-6.
Belser, J.A., Blixt, O., Chen, L.M., Pappas, C., Maines, T.R., Van Hoeven, N., Donis, R., Busch, J., McBride, R., Paulson, J.C., Katz, J.M. and Tumpey, T.M. (2008) Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc Natl Acad Sci U S A 105(21), 7558-63.
Blaas, D., Patzelt, E. and Kuechler, E. (1982) Identification of the cap binding protein of influenza virus. Nucleic Acids Res 10(15), 4803-12.
Braam, J., Ulmanen, I. and Krug, R.M. (1983) Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34(2), 609-18.
Bragstad, K., Jorgensen, P.H., Handberg, K., Hammer, A.S., Kabell, S. and Fomsgaard, A. (2007a) First introduction of highly pathogenic H5N1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol J 4, 43.
Bragstad, K., Jorgensen, P.H., Handberg, K.J. and Fomsgaard, A. (2007b) Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination. Arch Virol 152(3), 585-93.
Butt, K.M., Smith, G.J., Chen, H., Zhang, L.J., Leung, Y.H., Xu, K.M., Lim, W., Webster, R.G., Yuen, K.Y., Peiris, J.S. and Guan, Y. (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43(11), 5760-7.
Castrucci, M.R. and Kawaoka, Y. (1993) Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67(2), 759-64.
Chen, H., Deng, G., Li, Z., Tian, G., Li, Y., Jiao, P., Zhang, L., Liu, Z., Webster, R.G. and Yu, K. (2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101(28), 10452-7.
Chen, H., Li, Y., Li, Z., Shi, J., Shinya, K., Deng, G., Qi, Q., Tian, G., Fan, S., Zhao, H., Sun, Y. and Kawaoka, Y. (2006) Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol 80(12), 5976-83.
Chen, W., Calvo, P.A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J.R. and Yewdell, J.W. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7(12), 1306-12.
Cheung, C.L., Vijaykrishna, D., Smith, G.J., Fan, X.H., Zhang, J.X., Bahl, J., Duan, L., Huang, K., Tai, H., Wang, J., Poon, L.L., Peiris, J.S., Chen, H. and Guan, Y. (2007) Establishment of influenza A virus (H6N1) in minor poultry species in southern China. J Virol 81(19), 10402-12.
Chin, P.S., Hoffmann, E., Webby, R., Webster, R.G., Guan, Y., Peiris, M. and Shortridge, K.F. (2002) Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J Virol 76(2), 507-16.
Claas, E.C., Osterhaus, A.D., van Beek, R., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shortridge, K.F. and Webster, R.G. (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351(9101), 472-7.
Couceiro, J.N., Paulson, J.C. and Baum, L.G. (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29(2), 155-65.
Cros, J.F. and Palese, P. (2003) Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 95(1-2), 3-12.
De Benedictis, P., Joannis, T.M., Lombin, L.H., Shittu, I., Beato, M.S., Rebonato, V., Cattoli, G. and Capua, I. (2007) Field and laboratory findings of the first incursion of the Asian H5N1 highly pathogenic avian influenza virus in Africa. Avian Pathol 36(2), 115-7.
Duan, L., Campitelli, L., Fan, X.H., Leung, Y.H., Vijaykrishna, D., Zhang, J.X., Donatelli, I., Delogu, M., Li, K.S., Foni, E., Chiapponi, C., Wu, W.L., Kai, H., Webster, R.G., Shortridge, K.F., Peiris, J.S., Smith, G.J., Chen, H. and Guan, Y. (2007) Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J Virol 81(14), 7529-39.
Fodor, E., Crow, M., Mingay, L.J., Deng, T., Sharps, J., Fechter, P. and Brownlee, G.G. (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76(18), 8989-9001.
Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B. and Osterhaus, A.D. (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79(5), 2814-22.
Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M., Kemink, S.A., Munster, V., Kuiken, T., Rimmelzwaan, G.F., Schutten, M., Van Doornum, G.J., Koch, G., Bosman, A., Koopmans, M. and Osterhaus, A.D. (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101(5), 1356-61.
Gambaryan, A.S., Tuzikov, A.B., Pazynina, G.V., Desheva, J.A., Bovin, N.V., Matrosovich, M.N. and Klimov, A.I. (2008) 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J 5(1), 85.
Garcia-Sastre, A. (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279(2), 375-84.
Gastaminza, P., Perales, B., Falcon, A.M. and Ortin, J. (2003) Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription. J Virol 77(9), 5098-108.
Gonzalez, S. and Ortin, J. (1999) Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. EMBO J 18(13), 3767-75.
Guan, Y., Chen, H., Li, K., Riley, S., Leung, G., Webster, R., Peiris, J. and Yuen, K. (2007) A model to control the epidemic of H5N1 influenza at the source. BMC Infect Dis 7, 132.
Guan, Y., Shortridge, K.F., Krauss, S., Chin, P.S., Dyrting, K.C., Ellis, T.M., Webster, R.G. and Peiris, M. (2000) H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74(20), 9372-80.
Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P.S., Peiris, M., Shortridge, K.F. and Webster, R.G. (2000) Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol 74(14), 6309-15.
Horimoto, T. and Kawaoka, Y. (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3(8), 591-600.
Huarte, M., Falcon, A., Nakaya, Y., Ortin, J., Garcia-Sastre, A. and Nieto, A. (2003) Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J Virol 77(10), 6007-13.
Hulse-Post, D.J., Franks, J., Boyd, K., Salomon, R., Hoffmann, E., Yen, H.L., Webby, R.J., Walker, D., Nguyen, T.D. and Webster, R.G. (2007) Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol 81(16), 8515-24.
Inglis, S.C. and Brown, C.M. (1981) Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res 9(12), 2727-40.
Ito, T., Suzuki, Y., Takada, A., Kawamoto, A., Otsuki, K., Masuda, H., Yamada, M., Suzuki, T., Kida, H. and Kawaoka, Y. (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71(4), 3357-62.
Iwata, T., Fukuzawa, K., Nakajima, K., Aida-Hyugaji, S., Mochizuki, Y., Watanabe, H. and Tanaka, S. (2008) Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. Comput Biol Chem 32(3), 198-211.
Jiao, P., Tian, G., Li, Y., Deng, G., Jiang, Y., Liu, C., Liu, W., Bu, Z., Kawaoka, Y. and Chen, H. (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82(3), 1146-54.
Jonassen, C.M. and Handeland, K. (2007) Avian influenza virus screening in wild waterfowl in Norway, 2005. Avian Dis 51(1 Suppl), 425-8.
Kawaoka, Y., Krauss, S. and Webster, R.G. (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63(11), 4603-8.
Kawaoka, Y., Naeve, C.W. and Webster, R.G. (1984) Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139(2), 303-16.
Kida, H., Ito, T., Yasuda, J., Shimizu, Y., Itakura, C., Shortridge, K.F., Kawaoka, Y. and Webster, R.G. (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75 ( Pt 9), 2183-8.
Krauss, S., Obert, C.A., Franks, J., Walker, D., Jones, K., Seiler, P., Niles, L., Pryor, S.P., Obenauer, J.C., Naeve, C.W., Widjaja, L., Webby, R.J. and Webster, R.G. (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3(11), e167.
Lee, C.W., Swayne, D.E., Linares, J.A., Senne, D.A. and Suarez, D.L. (2005) H5N2 avian influenza outbreak in Texas in 2004: the first highly pathogenic strain in the United States in 20 years? J Virol 79(17), 11412-21.
Lee, M.S., Chang, P.C., Shien, J.H., Cheng, M.C., Chen, C.L. and Shieh, H.K. (2006) Genetic and pathogenic characterization of H6N1 avian influenza viruses isolated in Taiwan between 1972 and 2005. Avian Dis 50(4), 561-71.
Lee, M.S., Deng, M.C., Lin, Y.J., Chang, C.Y., Shieh, H.K., Shiau, J.Z. and Huang, C.C. (2007) Characterization of an H5N1 avian influenza virus from Taiwan. Vet Microbiol 124(3-4), 193-201.
Li, M.L., Rao, P. and Krug, R.M. (2001) The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20(8), 2078-86.
Marangon, S., Bortolotti, L., Capua, I., Bettio, M. and Dalla Pozza, M. (2003) Low-pathogenicity avian influenza (LPAI) in Italy (2000-01): epidemiology and control. Avian Dis 47(3 Suppl), 1006-9.
Mase, M., Kim, J.H., Lee, Y.J., Tsukamoto, K., Imada, T., Imai, K. and Yamaguchi, S. (2005) Genetic comparison of H5N1 influenza A viruses isolated from chickens in Japan and Korea. Microbiol Immunol 49(9), 871-4.
Mitnaul, L.J., Matrosovich, M.N., Castrucci, M.R., Tuzikov, A.B., Bovin, N.V., Kobasa, D. and Kawaoka, Y. (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74(13), 6015-20.
Mould, J.A., Drury, J.E., Frings, S.M., Kaupp, U.B., Pekosz, A., Lamb, R.A. and Pinto, L.H. (2000) Permeation and activation of the M2 ion channel of influenza A virus. J Biol Chem 275(40), 31038-50.
Mukhtar, M.M., Rasool, S.T., Song, D., Zhu, C., Hao, Q., Zhu, Y. and Wu, J. (2007) Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. J Gen Virol 88(Pt 11), 3094-9.
Neumann, G., Hughes, M.T. and Kawaoka, Y. (2000) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19(24), 6751-8.
Parmley, E.J., Bastien, N., Booth, T.F., Bowes, V., Buck, P.A., Breault, A., Caswell, D., Daoust, P.Y., Davies, J.C., Elahi, S.M., Fortin, M., Kibenge, F., King, R., Li, Y., North, N., Ojkic, D., Pasick, J., Pryor, S.P., Robinson, J., Rodrigue, J., Whitney, H., Zimmer, P. and Leighton, F.A. (2008) Wild bird influenza survey, Canada, 2005. Emerg Infect Dis 14(1), 84-7.
Pasick, J., Handel, K., Robinson, J., Copps, J., Ridd, D., Hills, K., Kehler, H., Cottam-Birt, C., Neufeld, J., Berhane, Y. and Czub, S. (2005) Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 86(Pt 3), 727-31.
Reid, A.H., Taubenberger, J.K. and Fanning, T.G. (2004) Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol 2(11), 909-14.
Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J. and Skehel, J.J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107), 45-9.
Schmitt, A.P. and Lamb, R.A. (2005) Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64, 383-416.
Senne, D.A. (2007) Avian influenza in North and South America, 2002-2005. Avian Dis 51(1 Suppl), 167-73.
Senne, D.A., Panigrahy, B., Kawaoka, Y., Pearson, J.E., Suss, J., Lipkind, M., Kida, H. and Webster, R.G. (1996) Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40(2), 425-37.
Seo, S.H., Hoffmann, E. and Webster, R.G. (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8(9), 950-4.
Seo, S.H., Hoffmann, E. and Webster, R.G. (2004) The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses. Virus Res 103(1-2), 107-13.
Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. and Kawaoka, Y. (2006) Avian flu: influenza virus receptors in the human airway. Nature 440(7083), 435-6.
Shortridge, K.F., Zhou, N.N., Guan, Y., Gao, P., Ito, T., Kawaoka, Y., Kodihalli, S., Krauss, S., Markwell, D., Murti, K.G., Norwood, M., Senne, D., Sims, L., Takada, A. and Webster, R.G. (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252(2), 331-42.
Sims, L.D., Domenech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, J., Martin, V. and Roeder, P. (2005) Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec 157(6), 159-64.
Smith, G.J., Fan, X.H., Wang, J., Li, K.S., Qin, K., Zhang, J.X., Vijaykrishna, D., Cheung, C.L., Huang, K., Rayner, J.M., Peiris, J.S., Chen, H., Webster, R.G. and Guan, Y. (2006) Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci U S A 103(45), 16936-41.
Sorrell, E.M., Ramirez-Nieto, G.C., Gomez-Osorio, I.G. and Perez, D.R. (2007) Genesis of pandemic influenza. Cytogenet Genome Res 117(1-4), 394-402.
Spackman, E., Swayne, D.E., Suarez, D.L., Senne, D.A., Pedersen, J.C., Killian, M.L., Pasick, J., Handel, K., Pillai, S.P., Lee, C.W., Stallknecht, D., Slemons, R., Ip, H.S. and Deliberto, T. (2007) Characterization of low-pathogenicity H5N1 avian influenza viruses from North America. J Virol 81(21), 11612-9.
Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C. and Wilson, I.A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312(5772), 404-10.
Suarez, D.L., Senne, D.A., Banks, J., Brown, I.H., Essen, S.C., Lee, C.W., Manvell, R.J., Mathieu-Benson, C., Moreno, V., Pedersen, J.C., Panigrahy, B., Rojas, H., Spackman, E. and Alexander, D.J. (2004) Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10(4), 693-9.
Subbarao, E.K., London, W. and Murphy, B.R. (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67(4), 1761-4.
Tweed, S.A., Skowronski, D.M., David, S.T., Larder, A., Petric, M., Lees, W., Li, Y., Katz, J., Krajden, M., Tellier, R., Halpert, C., Hirst, M., Astell, C., Lawrence, D. and Mak, A. (2004) Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis 10(12), 2196-9.
Walker, J.A., Molloy, S.S., Thomas, G., Sakaguchi, T., Yoshida, T., Chambers, T.M. and Kawaoka, Y. (1994) Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol 68(2), 1213-8.
Wang, G., Zhan, D., Li, L., Lei, F., Liu, B., Liu, D., Xiao, H., Feng, Y., Li, J., Yang, B., Yin, Z., Song, X., Zhu, X., Cong, Y., Pu, J., Wang, J., Liu, J., Gao, G.F. and Zhu, Q. (2008a) H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. J Gen Virol 89(Pt 3), 697-702.
Wang, J., Vijaykrishna, D., Duan, L., Bahl, J., Zhang, J.X., Webster, R.G., Peiris, J.S., Chen, H., Smith, G.J. and Guan, Y. (2008b) Identification of the progenitors of Indonesian and Vietnamese avian influenza A (H5N1) viruses from southern China. J Virol 82(7), 3405-14.
Wang, L., Suarez, D.L., Pantin-Jackwood, M., Mibayashi, M., Garcia-Sastre, A., Saif, Y.M. and Lee, C.W. (2008c) Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as a live influenza vaccine in poultry. Vaccine.
Wasilenko, J.L., Lee, C.W., Sarmento, L., Spackman, E., Kapczynski, D.R., Suarez, D.L. and Pantin-Jackwood, M.J. (2008) NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. J Virol 82(9), 4544-53.
Watanabe, T., Watanabe, S., Kim, J.H., Hatta, M. and Kawaoka, Y. (2008) Novel approach to the development of effective H5N1 influenza A virus vaccines: use of M2 cytoplasmic tail mutants. J Virol 82(5), 2486-92.
Weber, F., Kochs, G., Gruber, S. and Haller, O. (1998) A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology 250(1), 9-18.
Webster, R.G. (2004) Wet markets--a continuing source of severe acute respiratory syndrome and influenza? Lancet 363(9404), 234-6.
Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M. and Kawaoka, Y. (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1), 152-79.
Webster, R.G., Kawaoka, Y. and Bean, W.J., Jr. (1986) Molecular changes in A/Chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence. Virology 149(2), 165-73.
White, J., Matlin, K. and Helenius, A. (1981) Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89(3), 674-9.
Wu, G. and Yan, S. (2005) Prediction of mutation trend in hemagglutinins and neuraminidases from influenza A viruses by means of cross-impact analysis. Biochem Biophys Res Commun 326(2), 475-82.
Wu, G. and Yan, S. (2006) Timing of mutation in influenza A virus hemagglutinins by means of amino-acid distribution rank and fast Fourier transform. Protein Pept Lett 13(2), 143-8.
Wu, G. and Yan, S. (2008) Prediction of mutations engineered by randomness in H5N1 neuraminidases from influenza A virus. Amino Acids 34(1), 81-90.
Wu, W.L., Chen, Y., Wang, P., Song, W., Lau, S.Y., Rayner, J.M., Smith, G.J., Webster, R.G., Peiris, J.S., Lin, T., Xia, N., Guan, Y. and Chen, H. (2008) Antigenic profile of avian H5N1 viruses in Asia from 2002 to 2007. J Virol 82(4), 1798-807.
Xu, X., Subbarao, Cox, N.J. and Guo, Y. (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261(1), 15-9.
Ye, Z., Liu, T., Offringa, D.P., McInnis, J. and Levandowski, R.A. (1999) Association of influenza virus matrix protein with ribonucleoproteins. J Virol 73(9), 7467-73.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26401-
dc.description.abstract1997年香港發生人類的高致病性H5N1禽流感疫情,突顯人禽交界面在流行病學的重要性。其中以活禽市場扮演的角色格外重要。此外,分子流行病學發現,由2005-2006年中國青海湖H5N1高致病性禽流感病毒株和其後在歐洲及非洲爆發的禽流感疫情之H5N1病毒株極為類似,間接證實侯鳥可能是此次在歐、非洲疫情散播病毒的兇手。台灣位處侯鳥遷徙路徑之中,也由於水禽是禽流感病毒的天然宿主敦促台灣不容忽視有得到外來禽流感病毒株的機會。有鑒於此,本研究於2005年9月至2006年10月,選擇人禽交界的北部一大活禽市場,監測其是否有低致病性H5型禽流感病毒的活動,並仔細分析所分離得的低致病性H5型禽流感病毒株的分子特性、隨時間的分子演化及其在公共衛生的防疫意義。
做法是以鴨糞便所分離的26支鴨類低致病性H5亞型禽流感病毒(包含禽流感病毒混合型別)作為研究重點。因此本研究兩大目標:(一)探討此26支低致病性H5亞型禽流感病毒株的分子流行病學及生物特性,及(二)探察混合多型的檢體中,其禽流感病毒株之分子特性是否和單一型別之病毒株有所差異。方法上,使用狗腎細胞[Madin Darby canine kidney (MDCK) cells]及病毒斑純化(plaque purification),來分離混合多型的病毒株。擇選來自單一病毒斑的病毒株,再以反轉錄-連鎖聚合酶反應(reverse transcriptase- polymerase chain reaction, RT-PCR)得到11株低致病性H5亞型禽流感病毒株的八段之各段完整序列,並分析其與亞洲已知的高與低致病性H5分離株的核酸序列親緣樹關係、病毒致病力、和抗藥性相關的胺基酸位置及比對分析病毒和宿主細胞的結合位置的胺基酸。
禽流感病毒八段基因的核酸親緣樹分析,結果發現所有26支鴨類低致病性H5亞型禽流感病毒均非源於2003年流行於台灣的雞類低致病性H5N2禽流感病毒株(HA相似度為76.2%-79.4%;NA相似度為84.3%-85.5%),且約有15.4% (4/26)H5病毒株的M基因可能和1999年台灣本土雞類的低致病性H6N1禽流感病毒株[A/chicken/ Taiwan/165/99 (H6N1)]共同演化(相似度為96.5%-99.3%)。又有11.6%(3/26)的H5病毒株之NS基因是較相似於2000年日本北海道鴨類H5N3病毒株[A/duck/Hokkaido/447/ 2000 (H5N3)](相似度為94.8%-99.8%)。不僅如此,研究中更發現在2006年10月(候鳥來台之際),自台南鴨所分離到的一株H5病毒[A/duck/Taiwan/DV647/2006 (H5Ny)],是和研究中其他的H5病毒株於NA之外的其他7段基因片段均較不相似(相似度為70.1%-93.2%),顯示此病毒株可能從境外移入。
探察2005年9月至2006年10月26支鴨類低致病性禽流感病毒株之胺基酸,發現四大重要結果。(一)11株H5N2八段基因中,以HA基因的相似度為最小 (88.6%-98.9%)。而N2的基因的相似度為最大(94%-100%)。(二)於HA蛋白切割位的胺基酸序列顯示所有的分離株均為低致病性禽流感病毒(---R/),但是在A/duck/Taiwan/DV647/2006 (H5Ny)有多於一個的鹼性胺基酸(REKR/)。檢視狗腎細胞是否會造成病毒與細胞結合位(receptor binding site, RBS)的變異時,發現單一型別的H5病毒及混合他型別的H5病毒株兩者於HA蛋白胺基酸表現模式(patterns)相一致,顯示狗腎細胞傳代一代尚未改變結合位的胺基酸。且HA蛋白RBS有10/14(71.4%)個胺基酸位置是和1997年自新加坡鴨類低致病性H5N3病毒株[A/duck/Singapore/Q-F119-3/1997(H5N3)]相同。另本研究的低致病性H5禽流感病毒株HA胺基酸序列和目前所知高致病性H5禽流感病毒株的結構已有很大的差異,未來台灣這些低致病性H5禽流感病毒的HA蛋白結構仍須多方突破。(三)於其他和致病能力相關的胺基酸(PB1-F2, PB2-627, NS1-92, NA Stalk)均沒有高致病能力,且依舊保有低致病性禽流感病毒特徵,又並沒有在與干擾素相關的NS1-92上產生變異。(四)均未產生對兩類抗病毒藥物-剋流感與金剛胺的於NA與M蛋白抗藥性相關胺基酸位置之改變。以上再再顯示本研究中的低致病性H5型禽流感病毒株的HA蛋白可能為台灣所特有,且多月的持續存在隱示其地方性流行之潛力。
綜觀此研究,台灣2005~06年自活禽市場健康鴨得的26支低致病性H5亞型禽流感病毒尚無健康威脅。同時發現許多台灣前所未聞的低致病性H5亞型禽流感病毒的特性,但是仍有許多未知尚待解答,包括:究竟不同的細胞培養是否會改變這些病毒的分子特性而形成病毒異變株群(quasi-species),以及HA蛋白醣化作用對於抗體和病毒結合的影響。更重要的是,比較低致病性H5型禽流感病毒基因和胺基酸序列是否會隨著時間趨變以及此變化是否和高致病性H5亞型禽流感病毒有何異同處,又能否由低致病性H5禽流感病毒的分子演化脈絡以探察其轉變為高致病性H5禽流感病毒之可預測性及其分子機轉,將更有助於公共衛生的提早防治成效。
zh_TW
dc.description.abstractInterface areas between avian species and humans including live-bird markets (LBMs) had been documented their epidemiological importance since the highly pathogenic avian influenza (HPAI) virus H5N1 was isolated from human cases visited LBM in Hong Kong in 1997. The molecular epidemiology studies proved that the high similarity between the HPAI H5N1 isolates from Qinhai Lake in China and those from the subsequent spread to Europe and Africa during 2005-2006, suggesting the role of migratory birds. Taiwan, is located amid the flying route of migratory birds, thus elevates the possibility of imported avian influenza viruses. To avoid public health threat, we monitored the molecular changes of the 26 low pathogenic avian influenza (LPAI) H5 viruses isolated from healthy ducks through a virological surveillance system established in a large LBM in Northern Taiwan during Sept. 2005- Oct. 2006 and investigated their public health implications.
The aims of the study are to understand the molecular epidemiology and biological characteristics of the 26 LPAI H5 viruses and to examine any molecular differences between single H5 subtype and mixed subtype AI viruses. To separate the mixed viruses, we used one generation plaque purification on [Madin Darby canine kidney (MDCK) cells] and employed reverse transcriptase-polymerase chain reaction (RT-PCR) from the single plaque to get the full-length sequences, particularly each of the eight segments of all the 11 H5N2 viruses. Phylogenic analysis of our LPAI H5 isolates compared with different HPAI and LPAI H5 viruses in Asia and characterization of amino acids (AAs) involved in receptor binding sites, pathogenesis related sites, and anti-viral drug resistant sites were further investigated.
Phylogenic analysis showed that all the 26 duck LPAI H5 viruses were strikingly different from the 2003 Taiwan’s chicken LPAI H5N2 viruses (HA similarity:76.2%-79.4%; N2 similarity:84.3%-85.5%). Additionally, 15.4% (4/26) of the M gene of the studied duck LPAI H5 viruses might have the co-evolution with the 1999 Taiwan’s chicken H6N1 virus [A/chicken/Taiwan/165/99 (H6N1)] (similarity: 96.5%-99.3%). In NS gene, 11.6% (3/26) of our duck LPAI H5 viruses were grouped much closer to A/duck/Hokkaido/447/2000(H5N3) (similarity:94.8%-99.8%). Interestingly, A/duck/Taiwan/DV647/2006 (H5Ny) isolated from Tainan in October of 2006 when migrating birds flew into Taiwan, had its seven segments other than NA gene were very different from our other H5 isolates (similarity:70.1%-93.2%) implied that it might be an imported H5 virus.
Examining the AAs of the 26 duck LPAI H5 viruses revealed four major findings. First, the HA gene showed the lowest similarity (88.6%-98.9%) while the N2 gene showed the greatest one (94%-100%) among the eight segments of the 11 H5N2 viruses. Second, all of them were LPAI viruses demonstrated by the AAs at the cleavage site of HA protein (---R/), however, A/duck/Taiwan/DV647/2006 (H5Ny) virus contained more than one basic aa “REKR/” at such a cleavage site. In evaluating the possible changes of the receptor binding site (RBS) of HA due to passage of the single plaque-derived AIV (PP-AIV) on unnatural host cells, we found that the patterns of AAs of single vs multiple subtyped LPAI H5 duck viruses were quite similar implying that one passage of the PP-AIV on MDCK cells was insufficient to change RBS. In addition, 71.4% (10/14) of these RBS had the same sites as LPAI A/duck/ Singapore/ Q-F119-3/1997 (H5N3) virus. Furthermore, the sequences of the antigenic epitopes of HA protein of our LPAI H5 isolates were very much different from those currently available HPAI H5 viruses; thus we can’t map the antigenic sites of our LPAI H5 viruses to the known structure of HPAI H5 viruses. Third, all the known AAs at the sties related to viral pathogenicity (PB1-F2, PB2-627, NS1-92, NA Stalk) maintained all the molecular traits of LPAI and no mutation occurred at NS1-92 for IFN. Lastly, the analysis of antiviral important AAs of NA and M2 proteins of our LPAI H5 isolates found that all of them were sensitive to the neuraminidase inhibitor, Tamiflu and adamantane derivatives, respectively. All above findings further supported that our LPAI H5 viruses are very unique to Taiwan and persistence of these LPAI H5 viruses over several months may imply the potential endemicity of these LPAI H5 viruses in certain parts of Taiwan.
In summary, Taiwan’s 2005-2006 LPAI H5 viruses isolated from healthy ducks of one LBM had no public threat to humans and provided us the first time to learn biologic characteristics of LPAI H5 viruses. However, many questions still remained. Whether may the quasi-species of H5 be different in using less suitable cell lines to culture? How does the glycosylation of viral HA proteins affect receptor binding sites and their subsequent interactions with antibodies? Most importantly, would changes of LPAI H5 viral AAs and nucleotides have special patterns while time goes by? If it does, are their patterns helpful to understand the transition from LPAI to HPAI so that the trends towards to HPAI become more predictable and avoidable? We believe that thorough understanding the underlying mechanisms involved in stepwise micro-changes at each of the eight segments from LPAI to HPAI will definitely help to prevent future public health threat of pandemic influenza.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:08:56Z (GMT). No. of bitstreams: 1
ntu-97-R95842017-1.pdf: 1171644 bytes, checksum: ef0818243081a7039462a96b53854937 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員審定書.................................... i
致謝(Acknowledgement)................................. ii
中文摘要.............................................. iii
English Abstract...................................... vi
Chapter 1 Introduction................................ 1
Chapter 2 Literature Review........................... 3
2.1 Structure and Function of Influenza Viruses....... 3
2.1.1 The Influenza Viral Polymerase and RNP Complexes (PB2, PB1, PA, and NP)................................ 3
2.1.2 Envelope Proteins (HA and NA)................... 5
2.1.3 The Influenza Viral Matrix Protein.............. 6
2.1.4 Other Influenza Viral Nonstructural (NS) Proteins ..............................................6
2.2 Epidemiology of Recent Avian Influenza Outbreaks around the World...................................... 7
2.2.1 China and Hong Kong............................. 7
2.2.2 Northeast Asia.................................. 8
2.2.3 Southeast Asia.................................. 9
2.2.4 North America................................... 9
2.2.5 Europe.......................................... 10
2.2.6 Africa.......................................... 10
2.2.7 Taiwan.......................................... 10
2.3 Virological Surveillance of Avian Influenza Viruses (AIVs) in Live-bird Markets and Poultry Farms......... 11
2.3.1 Important Subtypes of Avian Influenza Viruses... 11
2.3.2 Other Most Common and Epidemiologically Important Subtypes of AIVs...................................... 12
2.4 Important Amino Acid Sites of Avian Influenza Viruses .............................................14
2.4.1 Pathogenesis Related Amino Acid Sites........... 14
2.4.2 Other Inter-species Transmission Related Sites.. 15
2.4.3 Viral Antigenicity Related Sites................ 16
2.4.4 Anti-influenza Drug Resistance Related Sites.... 16
Chapter 3 Objectives, Specific Aims and Hypotheses.... 18
3.1 Objectives........................................ 18
3.2 Specific Aims..................................... 18
3.3 Hypotheses........................................ 18
Chapter 4 Materials and Methods....................... 19
4.1 Virologic Surveillance in the One Live Bird Market in Northern Taiwan....................................... 19
4.1.1 Sources and Species of Avian Poultry at the Studied Live-Bird Market...................................... 19
4.1.2 Study Design, Sampling and Virus Isolation...... 20
4.2 Laboratory Methods................................ 22
4.2.1 Typing and Subtypings of HA and NA Genes of AIV. 22
4.2.2 Purification of AIV from Fecal Samples with Mixed Subtypes.............................................. 23
4.2.3 Identification of Avian Influenza Viral Gene Segments ..............................................24
4.2.4 Sequencing of Avian Influenza Viral Genes....... 25
4.3 Phylogenic Analysis of the Isolated AI Viruses.... 25
4.4 Structural Presentation ............................27
4.5 Bioinformatics Analysis on Important Biological Characteristicsof AI Viruses.......................... 27
4.5.1 Comparison of Biological Characteristics of AI Viruses Important inTransmission, Public Health and Pathogenesis.......................................... 27
Chapter 5 Results..................................... 30
5.1 AI Viruses Identified from Virological Surveillance in the One Live Bird Market in Northern Taiwan........... 30
5.2 Nucleotide Sequence Similarities of Hemagglutinin and Neuraminidase Genes among the 2005-06 Taiwan’s H5 Isolates.............................................. 31
5.2.1 Hemagglutinin Gene.............................. 31
5.2.2 Neuraminidase Gene.............................. 31
5.2.3 Six Internal Genes.............................. 31
5.3 Phylogenetic Analysis of Eight Gene Segments...... 32
5.3.1 Hemagglutinin Gene.............................. 32
5.3.2 Neuraminidase Gene.............................. 32
5.3.3 The Six Internal Genes.......................... 33
5.4 Examination of Important Amino Acids Related to Increasing Viral Pathogenicity........................ 36
5.4.1 Cleavage Site of HA Protein..................... 36
5.4.2 Receptor Binding Site of HA Protein............. 37
5.4.3 PB2-627......................................... 38
5.4.4 PB1-F2.......................................... 38
5.4.5 NS1-92.......................................... 38
5.4.6 NA Stalk Deletion............................... 38
5.5 Variations in Single H5 Subtype versus Mixed H5 and Other Subtypes of AI Viruses.......................... 39
5.6 Sensitivity of Anti-influenza Drugs............... 39
5.6.1 Oseltamivir Sensitivity......................... 39
5.6.2 Adamantane Sensitivity.......................... 40
Chapter 6 Discussion................................. 41
6.1 Relationship between the 2005-2006 H5N2 Viruses and the Past AI Viruses in Taiwan – Based on Phylogenetic Analysis and Sequence Comparison...................... 42
6.1.1 Past H5 AI Viruses in Taiwan.................... 42
6.1.2 Past Other Non-H5 AI Viruses in Taiwan.......... 43
6.2 Molecular Comparison between the Taiwan’s 2005-2006 H5N2 Viruses and Worldwide LPAI and HPAI H5 and non-H5 Viruses............................................... 44
6.2.1 Global LPAI Viruses............................. 44
6.2.2 Global HPAI H5 Viruses.......................... 46
6.2.3 Global HPAI H7 Viruses.......................... 47
6.3 Possible Origin and Sources of Taiwan’s 2005-06 LPAI H5 Viruses............................................ 48
6.4 Antigenic Evolution of Taiwan’s 2005-06 LPAI H5 Viruses............................................... 49
6.4.1 In Nature....................................... 49
6.4.2 In MDCK Cell Line............................... 50
6.5 Public Health Implications........................ 51
6.6 Limitations....................................... 52
6.7 Future Directions................................. 54
References............................................ 56
Figure................................................ 69
Table................................................. 87
Appendix.............................................. 99
Biography .............................................101
dc.language.isoen
dc.title2005-2006年台灣活禽市場家禽流行性感冒病毒的分子流行病學zh_TW
dc.titleMolecular Epidemiology of Avian Influenza Viruses in A Live Bird Market in Taiwan during 2005-2006en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高全良,蔡向榮,王金和,張傳雄
dc.subject.keyword禽流感病毒監測,活禽市場,分子流行病學,低致病性禽流感病毒H5N2,親緣分析,病毒抗藥性,侯鳥,人畜共通傳染病,台灣,zh_TW
dc.subject.keywordAvian influenza surveillance,live-bird market,molecular epidemiology,low pathogenic avian influenza H5N2,phylogenic analysis,drug resistance,migratory bird,zoonosis,Taiwan,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved