Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩
dc.contributor.authorChin-An Linen
dc.contributor.author林晉安zh_TW
dc.date.accessioned2021-06-08T07:08:25Z-
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citationCH1
[1] K. E. Drexler, Engines of creation, The Coming Era of Nanotechnology: Anchor Press/Doubleday Garden City, NY (1986).
[2] K. E. Drexler, Scientific American 285 (2001), p. 74.
[3] G. M. Whitesides and B. Grzybowski, Science 295 (2002), p. 2418.
[4] C. Joachim, J. K. Gimzewski and A. Aviram, Nature 408 (2000), p. 541.
[5] C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science 289 (2000), p. 1172.
[6] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price and J. M. Tour, Applied Physics Letters 78 (2001), p. 3735.
[7] A. P. Alivisatos, Science 271 (1996), p. 933.
[8] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, Nature 389 (1997), p. 699.
[9] M. H. Devoret and R. J. Schoelkopf, Nature 406 (2000), p. 1039.
[10] S. Iijima, Nature 354 (1991), p. 56.
[11] C. Dekker, Physics Today 52 (1999), p. 22.
[12] Y. Zhang, K. Suenaga, C. Colliex and S. Iijima, Science 281 (1998), p. 973.
[13] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima, Science 285 (1999), p. 1719.
[14] J. T. Hu, T. W. Odom and C. M. Lieber, Accounts of Chemical Research 32 (1999), p. 435.
[15] Y. Cui and C. M. Lieber, Science 291 (2001), p. 851.
[16] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294 (2001), p. 1313.
[17] W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, Science 277 (1997), p. 1287.
[18] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang and A. P. Alivisatos, Science 292 (2001), p. 2060.
[19] W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, Advanced Materials 15 (2003), p. 526.
[20] P. G. Collins and P. Avouris, Scientific American 283 (2000), p. 62.
[21] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415 (2002), p. 617.
[22] Y. Cui, X. F. Duan, J. T. Hu and C. M. Lieber, Journal of Physical Chemistry B 104 (2000), p. 5213.
[23] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, Nature 409 (2001), p. 66.
[24] M. S. Gudiksen, J. F. Wang and C. M. Lieiber, Journal of Physical Chemistry B 105 (2001), p. 4062.
[25] C. M. L. X. Duan, Advanced Materials 12 (2000), p. 298.
[26] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, Journal of Applied Physics 98 (2005), p. 041301.
[27] R. Triboulet and J. Perriere, Prog. Cryst. Growth Charact. Mater. 47 (2003), p. 65.
[28] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001), p. 1897.
[29] W. I. Park, Y. H. Jun, S. W. Jung and G.-C. Yi, Applied Physics Letters 82 (2003), p. 964.
[30] W. D. Yu, X. M. Li and X. D. Gao, Applied Physics Letters 84 (2004), p. 2658.
[31] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291 (2001), p. 1947.
[32] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, Applied Physics Letters 83 (2003), p. 3401.
[33] H. Y. Y. Wu, M. Huang, B. Messer, J. Song and P. Yang, Chemistry - A European Journal 8 (2002), p. 1260.
[34] R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, Applied Physics Letters 86 (2005), p. 251104.
[35] L. Guo, Y. L. Ji, H. Xu, P. Simon and Z. Wu, Journal of the American Chemical Society 124 (2002).
[36] W. J. Dawson, Am. Ceram. Soc. Bull. 67 (1988), p. 1673.
[37] S. Yamabi and H. Imai, J. Mater. Chem. 12 (2002), p. 3773.
[38] B. Liu and H. J. Zeng, J. Am. Chem. Soc. 125 (2003), p. 4430.
[39] X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, Mater. Chem. Phys. 78 (2002), p. 99.
[40] L. Vayssieres, K. Keis, S. E. Lindqusit and A. Hagfeldt, J. Phys. Chem. B 105, p. 3350.
[41] Z. Wang, X. Qian, J. Yin and Z. Zhu, J. Solid State Chem. 177 (2004), p. 2144.
[42] J. H. Lee, I. C. Leu and M. H. Hon, J. Cryst. Growth 275 (2005), p. 2069.
[43] S. I. I., H. Y.-J. and D. C. C., Applied Physics Letters 87 (2005), p. 241106.
[44] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. A. G. Requicha, Nat. Mater. 2 (2003), p. 229.
[45] E. Ozbay, Science 311 (2006), p. 189.
[46] B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos and J. Liphardt, Nano Letter 5 (2005), p. 2246.
[47] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin, Science 277 (1997), p. 1078.
[48] J. Haes Amanda, L. Chang, L. Klein William and P. Van Duyne Richard, J. Am. Chem. Soc. 127 (2005), p. 2264.
[49] S. Link, Z. L. Wang and M. A. El-Sayed, J. Phys. Chem. B 103 (1999), p. 3529.
[50] C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105 (2001), p. 5599.
[51] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Science 294 (2001), p. 1901.
[52] A. D. McFarland and R. P. Van Duyne, Nano Letter 3 (2003), p. 1057.
[53] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley and Y. Xia, Nano Letter 5 (2005), p. 2034.
[54] W. Huang, W. Qian and M. A. J. El-Sayed, Phys. Chem. B 109 (2005), p. 18881.
[55] S. E.-S. Link, M. A., J. Phys. Chem. B 103 (1999), p. 8410.
[56] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang and G. Bao, Journal of Applied Physics 102 (2007), p. 084303.
[57] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, J. Phys. Chem. B 110 (2006), p. 50.
[58] X. Bai, E. G. Wang, P. Gao and Z. L. Wang, Nano Lett. 3 (2003), p. 1147.
[59] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer, Nat Mater 3 (2004), p. 601.
[60] P. Cheng, D. Li, Z. Yuan, P. Chen and D. Yang, Applied Physics Letters 92 (2008), p. 041119.
CH2
[1] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Advanced Functional Materials 12 (2002), p. 323.
[2] B. Freitag, S. Kujawa, P. M. Mul, J. Ringnalda and P. C. Tiemeijer, Ultramicroscopy 102 (2005), p. 209.
[3] W. L. Bragg, Proceedings of the Cambridge Philosophical Society 17 (1914), p. 43.
[4] I. Farnan, IB Mineral Sciences Module B: Transport Properties.
CH3
[1] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer, Nat Mater 3 (2004), p. 601.
[2] P. Cheng, D. Li, Z. Yuan, P. Chen and D. Yang, Applied Physics Letters 92 (2008), p. 041119.
[3] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang and G. Bao, Journal of Applied Physics 102 (2007), p. 084303.
[4] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, J. Phys. Chem. B 110 (2006), p. 50.
[5] X. Bai, E. G. Wang, P. Gao and Z. L. Wang, Nano Lett. 3 (2003), p. 1147.
[6] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, Applied Physics Letters 83 (2003), p. 3401.
[7] H. Y. Y. Wu, M. Huang, B. Messer, J. Song and P. Yang, Chemistry - A European Journal 8 (2002), p. 1260.
[8] R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, Applied Physics Letters 86 (2005), p. 251104.
[9] L. Guo, Y. L. Ji, H. Xu, P. Simon and Z. Wu, Journal of the American Chemical Society 124 (2002).
[10] X. Feng, J. Kang, W. Inami, X. Yuan, M. Terauchi, T. Sekiguchi, S. Tsunekawa, S. Ito and T. Sakurai, Crystal Growth & Design 7 (2007), p. 564.
[11] D. C. Kim, B. H. Kong, H. K. Cho, D. J. Park and J. Y. Lee, Nanotechnology 18 (2007), p. 015603.
[12] C. S. Barret and T. B. Massalski (1980).
[13] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Applied Physics Letters 68 (1996), p. 403.
[14] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, Journal of Applied Physics 79 (1996), p. 7983.
[15] S. A. Studenikin, N. Golego and M. Cocivera, Journal of Applied Physics 84 (1998), p. 2287.
[16] S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr and M. R. Davolos, The International Journal of Inorganic Materials 3 (2001), p. 749.
[17] B. Lin, Z. Fu and Y. Jia, Applied Physics Letters 79 (2001), p. 943.
[18] E. G. Bylander, Journal of Applied Physics 49 (1978), p. 1188.
[19] X. H. Sun, S. Lam, T. K. Sham, F. Heigl, A. Jurgensen and N. B. Wong, Journal of Physical Chemistry B 109 (2005), p. 3120.
[20] B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, Physical Review B 24 (1981), p. 649.
[21] P. C. Andersen and K. L. Rowlen, Applied Spectroscopy 56 (2002), p. 124A.
[22] J. R. Lakowicz, Analytical Biochemistry 337 (2005), p. 171.
[23] E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo and A. Polman, Applied Physics Letters 92 (2008), p. 083110.
CH4
[1] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer, Nat Mater 3 (2004), p. 601.
[2] P. Cheng, D. Li, Z. Yuan, P. Chen and D. Yang, Applied Physics Letters 92 (2008), p. 041119.
[3] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang and G. Bao, Journal of Applied Physics 102 (2007), p. 084303.
[4] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, J. Phys. Chem. B 110 (2006), p. 50.
[5] X. Bai, E. G. Wang, P. Gao and Z. L. Wang, Nano Lett. 3 (2003), p. 1147.
[6] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, Applied Physics Letters 83 (2003), p. 3401.
[7] H. Y. Y. Wu, M. Huang, B. Messer, J. Song and P. Yang, Chemistry - A European Journal 8 (2002), p. 1260.
[8] R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, Applied Physics Letters 86 (2005), p. 251104.
[9] L. Guo, Y. L. Ji, H. Xu, P. Simon and Z. Wu, Journal of the American Chemical Society 124 (2002).
[10] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, Nano Letters 5 (2005), p. 1231.
[11] J. R. Lakowicz, Analytical Biochemistry 337 (2005), p. 171.
[12] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Applied Physics Letters 68 (1996), p. 403.
[13] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, Journal of Applied Physics 79 (1996), p. 7983.
[14] S. A. Studenikin, N. Golego and M. Cocivera, Journal of Applied Physics 84 (1998), p. 2287.
[15] E. G. Bylander, Journal of Applied Physics 49 (1978), p. 1188.
[16] X. H. Sun, S. Lam, T. K. Sham, F. Heigl, A. Jurgensen and N. B. Wong, Journal of Physical Chemistry B 109 (2005), p. 3120.
[17] B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, Physical Review B 24 (1981), p. 649.
[18] B. Lin, Z. Fu and Y. Jia, Applied Physics Letters 79 (2001), p. 943.
CH6
[1] B. O’Regan and M. A. Grätzel, Nature (London) 353, 737 (1991)
[2] N. Kopidakis, N. R. Neale, K. Zhu, J. Van De Lagemaat, and A. J. Frank,Appl. Phys. Lett. 87, 202106 (2005).
[3] Lee C. J., Lee T. J., Lyu S. C., Zhang Y., Ruh H. and Lee H. J. Appl. Phy. Lett. 81 3648 (2002)
[4] Zhao Q.,Xu X. Y.,Song X. F.,Zhang X. Z., Yu D. P.,Li C. P. and Guo L. Appl. Phys. Lett. 88 033102(2002)
[5] Law M., Greene L. E., John J. C., Saykally R. and Yang P. D. Nat. Mater. 4 455 (2005)
[6] Lu C. Y.,Chang S. J.,Chang S. P.,Lee C. T.,Kuo C. F.,Chang H. M.,Chiou Y. Z.,Hsu C. L. and Chen I. C. Appl. Phys. Lett. 89 153101 (2006)
[7] Saito N.,Haneda H.,Sekiguchi T.,Ohashi N.,Sakaguchi I. and Koumoto K. Adv. Mater. 14 418 (2002)
[8] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003).
[9] Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, and P. Yang, Chem.-Eur. J. 8, 1260 (2002).
[10] R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl. Phys. Lett. 86,251104 (2005).
[11] Y. Ji, L. Guo, H. Xu, P. Simon, and Z. Wu, J. Am. Chem. Soc. 124, 14864 (2002).
[12] Cotton, T. M., Uphaus, R. A., Mo ̈bius, D. J. Phys. Chem. 90, 6071.(1986)
[13] Xi, K., Sharma, S. K., Muenow, D. W. J. Raman Spectrosc.,23, 621.(1992)
[14] Kneipp, K., Hinzmann, G., Fassler, D. Chem. Phys. Lett. ,99, 503.(1983)
[15] Zhu, Z., Mao, C., Yang, R., Dai, L., Nie, C. J. Raman Spectrosc., 24, 221.(1993)
[16] Lippitsch, M. E. Chem. Phys. Lett. , 74, 125.(1980)
[17] Pettinger, B., Krischer, K., Ertl, G. Chem. Phys. Lett., 151,151(1988)
[18] Bachackashvilli, A., Efrima, S., Katz, B., Priel, Z. Chem. Phys. Lett., 94, 571 (1983)
[19] Bachackashvilli, A., Katz, B., Priel, Z., Efrima, S. J. Phys. Chem., 88, 6185 (1984)
[20] Aroca, R., Loutfy, R. O. J. Raman Spectrosc., 12, 262(1982)
[21] Lee, P. C., Melsel, D. J. Phys. Chem. , 86, 3391 (1982)
[22] G. Mie,Ann. Phys. (N.Y),25,377 (1908)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26386-
dc.description.abstract在本論文中,我們利用水熱法於金跟銀上合成出高指向性的柱狀氧化鋅。 在第一部分,我們觀察成長於鍍金矽基板上的柱狀氧化鋅。我們發現到金膜上金顆粒有助於氧化鋅的成長。在X光繞射部分,我們發現到此柱狀氧化鋅結構對於(103)面有高指向性。 透過區域化表面電漿共振的效果,成功的提高了柱狀氧化鋅在缺陷部份的放光。 透過金的幫助下,在光激螢光我們觀察到可能光/紫外光的放光比有將近107倍的加強。可見發光的波峰部分,可以觀察到逐漸由570 nm 紅移到 600nm,這是由於金的區域化表面共振散射長波長共振帶所導致的結果。而在陰極電子激螢光部分,也顯示出與光激螢光相同的結果。
第二部分,我們同樣地利用水熱法在鍍銀的矽基板上成長高指向性柱狀氧化鋅。掃描式電子顯微鏡觀察到銀的膜厚與金屬顆粒有正比趨勢。在X光繞射譜,我們發現此柱狀氧化鋅對於(002)面有高指向性。透過光激螢光的分析,銀對於缺陷放光的則加強在波長500nm附近。透過以上分析,我們證實了區域化表面電漿共振與金屬的顆粒大小有很大的相依性,並且根據金屬的顆粒及種類,會分別加強不同波長的放光。 而發光的強度與金屬膜厚的趨勢則是正相關。
zh_TW
dc.description.abstractIn this thesis, we synthesized the high orientation ZnO nanorods array by hydrothermal process. First, we studied the ZnO on the Au-coated Si substrate. The diameter of ZnO arrays could be controlled with the aid of Au island films as a catalyst. The X-ray diffraction investigation indicated that the epitaxy of the ZnO array preferred to grow along the plane (103). Defect-level emission was greatly enhanced due the localized surface plasmon resonance of Au island film coupled with ZnO array. The intensity ratio of visible/UV was enhanced 107 times with the aid of Au island films. The enhanced DLE redshift from 570 to 600 nm confirms that the PL enhancement arises mostly from the effective scattering of the LSP in the longer wavelength range of in-plane resonance band.
Second, we demonstrate that vertical well-aligned crystalline ZnO nanorods arrays were grown on Ag/Si substrates by hydrothermal process. Different thicknesses of Ag films on Si substrates were prepared by e-gun evaporator. The morphology of Ag films were observed by the scanning electron microscopy. The XRD of ZnO on Ag islands result indicated that the epitaxy will grow along the plane (002). The Ag films have help for the enhancement of the emission at around 500nm. We prove that the LSP resonance depends on the size of the metal and the LSP resonance only happens at specific wavelength. The effect of the LSP varies with both the intensity and wavelength of DLE.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:08:25Z (GMT). No. of bitstreams: 1
ntu-97-R95941090-1.pdf: 2321143 bytes, checksum: 393049074ce9037222cd771c60e2259b (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 iv
Abstract iv
Acknowledgement iv
Contents iv
List of figures vi
Chapter 1 : Introduction 1
1.1 Nanotechnology 1
1.2 Self-Assembly 3
1.3 1-D Semiconducting Structures 4
1.4 Zinc oxide (ZnO) Nanostructures 6
1.5 Hydrothermal 7
1.6 Localized Surface Plasmon Resonance (LSPR) 9
1.7 Scope and Aim of the Thesis 10
1.8 References 11
Chapter 2 : Experimental 14
2.1 Growth of the ZnO Nanorods 14
2.2 Scanning Electron Microscope (SEM) 16
2.3 Transmission Electron Microscopy (TEM) 17
2.4 X-ray Diffraction (XRD) 21
2.5 Photoluminescence (PL) 23
2.6 References 27
Chapter 3: Localized Surface Plasmon Enhanced Green-Yellow Light Emission of the ZnO Nanorod Arrays Using Au Island Film 28
3.1 Introduction 28
3.2 Experimental 29
3.3 Results and Discussions 29
3.3.1 Structural Characterization 30
3.3.2 PL 33
3.3.3 CL 38
3.4 Summary 39
3.5 References 60
Chapter 4: Localized Surface Plasmon Enhanced Green-Blue Light Emission of the ZnO Nanorod Arrays Using Ag Island Film 62
4.1 Introduction 62
4.2 Experimental 63
4.3 Result and Discussion 64
4.3.1 Sample preparation 64
4.3.2 X-Ray Diffraction (XRD) Analysis 65
4.3.3 Surface Plasmon Characterization 65
4.3.4 Emission Enhancement 66
4.4 Summary 71
4.5 References 82
Chapter 5: Conclusions 84
Chapter 6: Future Work-ZnO nanowire dye-sensitized solar cell 86
6.1 Introduction 86
6.2 Approach 88
6.3 References 89
dc.language.isoen
dc.subject區域化表面電漿共振zh_TW
dc.subject氧化鋅zh_TW
dc.subject奈米柱zh_TW
dc.subject光激螢光zh_TW
dc.subject陰極電子激螢光zh_TW
dc.subjectPhotoluminescence (PL)en
dc.subjectLocalized Surface Plasmon Resonance (LSPR)en
dc.subjectcathodoluminescence (CL)en
dc.subjectZnOen
dc.subjectnanorodsen
dc.title利用區域化表面電漿子共振加強柱狀氧化鋅之放光zh_TW
dc.titleLocalized Surface Plasmon Enhanced Green-Yellow Light Emission of the ZnO Nanorod Arrays Using Metal Island Filmen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如,陳建彰,陳敏璋,吳育任,楊偉傑
dc.subject.keyword氧化鋅,奈米柱,光激螢光,陰極電子激螢光,區域化表面電漿共振,zh_TW
dc.subject.keywordZnO,nanorods,Photoluminescence (PL),cathodoluminescence (CL),Localized Surface Plasmon Resonance (LSPR),en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved