Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘鈞
dc.contributor.authorSih-Han Chenen
dc.contributor.author陳思翰zh_TW
dc.date.accessioned2021-06-08T07:08:19Z-
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citationReferences
1. Ruth Duncan, Lorella Izzo. Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews (2005) 57: 2215– 2237
2. Ruedeekorn Wiwattanapatapee, Begon˜a Carren˜o-Go´mez, Navid Malik, and Ruth Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharmaceutical Research (2000) 17- 8:991-998
3. H Maruyama-Tabata, Y Harada, T Matsumura, E Satoh, F Cui, M Iwai, M Kita, S Hibi, J Imanishi, T Sawada and O Mazda. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Therapy (2000) 7:53–60
4. Jolanta F. Kukowska-Latallo, Kimberly A. Candido, Zhengyi Cao, Shraddha S. Nigavekar, Istvan J. Majoros, Thommey P. Thomas, Lajos P. Balogh, Mohamed K. Khan, and James R. Baker, Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res (2005) 65-12:5317-5324
5. Kelly M. Kitchens, Mohamed E.H. El-Sayed, Hamidreza Ghandehari. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Advanced Drug Delivery Reviews (2005) 57:2163– 2176
6. Kelly M. Kitchens, Rohit B. Kolhatkar, Peter W. Swaan, Natalie D. Eddington, and Hamidreza Ghandehari. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharmaceutical Research (2006), 23-12:2818-2826
7. Kelly M. Kitchens, Amy B. Foraker, Rohit B. Kolhatkar, Peter W. Swaan, and Hamidreza Ghandehari. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharmaceutical Research (2007), 24-11:2138-2145
8. Mohamed El-sayed, Mark Ginski, Christopher A. Rhodes, and Hamidreza Ghandehari. Influence of surface chemistry of poly (amidoamine) dendrimers on Caco-2 cell monolayers. Journal of Bioactive and Compatible Polymers (2003), 18:7-22
9. Seungpyo Hong, Anna U. Bielinska, Almut Mecke, Balazs Keszler, James L. Beals, Xiangyang Shi, Lajos Balogh, Bradford G. Orr, James R. Baker, Jr., and Mark M. Banaszak Holl. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjugate Chem. (2004), 15:774-782
10. Roseita Esfand and Donald A. Tomalia. Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. DDT (2001), 6-8:427-436
11. Antonio Quintana, Ewa Raczka, Lars Piehler, Inhan Lee, Andrzej Myc, Istvan Majoros, Anil K. Patri, Thommey Thomas, James Mule´ , and James R. Baker, Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research (2002), 19:1310-1316
12. K. Hoste and E. Schacht. Synthesis and biological evaluation of PEG-substituted macromolecular prodrugs of mitomycin C. Journal of Bioactive and Compatible Polymers (2002), 17:123-138
13. J.S. Pieper, T. Hafmans, J.H. Veerkamp, T.H. van Kuppevelt. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials (2000), 21:581-593
14. Jayant Khandare and Tamara Minko. Polymer–drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. (2006), 31:359–397
15. Nora Bayer, Daniela Schober, Elisabeth Prchla, Robert F. Murphy, Dieter Blaas, and Renate Fuchs. Effect of bafilomycin a1 and nocodazole on endocytic transport in hela cells: implications for viral uncoating and infection. Journal of Virology (1998), 72: 9645–9655
16. Christine Gonc¸alves, Eric Mennesson, Renate Fuchs, Jean-Pierre Gorvel, Patrick Midoux, and Chantal Pichon. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Molecular Therapy (2004), 10:373-385
17. Joanna Rejman, Volker Oberle, Inge S. Zuhorn and Dick Hoekstra. Size-dependent internalization of particles via the pathways of clathrin and caveolae-mediated endocytosis. Bio chem. J. (2004), 377:159-169
18. M. Ogris, E. Wagner, P. Steinlein. A versatile assay to study cellular uptake of gene transfer complexes by flow cytometry. Biochimica et Biophysica Acta (2000), 1474:237-243
19. Min Huang, Zengshuan Ma, Eugene Khor, and Lee-Yong Lim. Uptake of FITC-chitosan nanoparticles by A549 Cells. Pharmaceutical Research (2002), 19:1488-1494
20. Joanna Rejman, Alessandra Bragonzi, and Massimo Conese. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular Therapy (2005), 12:468-474
21. Palmer A. Orlandi and Peter H. Fishman. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. The Journal of Cell Biology (1998), 141:905-915
22. Li-Hsien Wang, Karen G. Rothberg, and Richard G. W. Anderson. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal of Cell Biology (1993), 123:1107-1117
23. LK Medina-Kauwe, J Xie and S Hamm-Alvarez. Intracellular trafficking of nonviral vectors. Gene Therapy (2005) 12:1734-1751
24. Gonzallez-Gaitan M.Signal. Dispersal and transduction through the endocytic pathway. Nature Reviews Molecular Cell Biology (2003), 4:213-224
25. D.Teis and L. A. Huber. The odd couple: signal transduction and endocytosis Cell. Mol. Life Sci(2003), 60:2020–2033
26. Sushmita Mukherjee, Richik N. Ghosh, and Frederick R. Maxfield. Endocytosis. Physiological Reviews (1997), 77:760-790
27. Swanson Ja, Watts C. Macropinocytosis. Trends In Cell Biology (1995), 5:424-428
28. Oliver Meier, Karin Boucke, Silvija Vig Hammer, Stephan Keller, Robert P. Stidwill, Silvio Hemmi, and Urs F. Greber. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. The Journal of Cell Biology (2002), 158:1119-1131
29. Singh AK, Kasinath BS, Lewis EJ. Interaction of polycations with cell-surface negative charges of epithelial cells. Biochim Biophys Acta (1992), 3:337-42
30. Idit Kopatz, Jean-Serge Remy, Jean-Paul Behr. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. The Journal of Gene Medicine (2004), 6: 769-776.
31. P. M. Quinton and C. W. Philpott. A Role For Anionic sites in epithelial architecture. The Journal of Cell Biology (1978), 56:787-796
32. Rohit Kolhatkar, Deborah Sweet, and Hamidreza Ghandehari. Functionalized Dendrimers as nanoscale drug carriers. Multifunctional Pharmaceutical Nanocarriers (2008), 201-232
33. Hanna Damke, Takeshi Baba, Alexander M. van der Bliek, and Sandra L. Schmid. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. The Journal of Cell Biology (1995), 131:69-80
34. Maria Manunta, Peng Hong Tan, Pervinder Sagoo, Kirk Kashe and Andrew J. T. George. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Research (2004), 32:2730-2739
35. F. Philipp Seib, Arwyn T. Jones, Ruth Duncan. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. Journal of Controlled Release (2007), 117:291-300
36. Satyajit Mayor and Richard E. Pagano. Pathways of clathrin-independent Endocytosis. Molecular Cell Biology (2007), 8:603-612
37. Deepak K. Sharma, Amit Choudhury, Raman Deep Singh, Christine L. Wheatley, David L. Marks, and Richard E. Pagano. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. The Journal of Biological Chemistry (2003), 278:7564-7572
38. Günther Baravalle, Daniela Schober, Marlis Huber Nora Bayer, Robert F, Murphy, Renate Fuchs. Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature. Cell Tissue Res (2005), 320:99-113
39. Oliver Meier, Karin Boucke, Silvija Vig Hammer, Stephan Keller, Robert P. Stidwill, Silvio Hemmi, and Urs F. Greber. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. The Journal of Cell Biology (2002), 158:1119–1131
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26383-
dc.description.abstractDendrimers are highly branched polymer with high density of surface functionality and core cavities. The unique architecture of dendrimers contributes to many medical application. The surface electricity of dendrimers is defined as cationic, anionic and neutral due to the functional group, amine, carboxyl and hydroxyl. The internalization of drug/gene carriers is highly interesting because it is important for designing a suitable drug/gene carrier. In this study, several endocytotic inhibitors were used to investigate the influence of surface electricity on internalization of poly (amidoamine) (PAMAM) dendrimers, and confirmed the cellular distribution of dendrimers in the presense of various endocytotic inhibitors by confocal laser scanning microscopy. The results indicate that the cellular uptakes of different PAMAM dendrimers were obviously influenced of surface functionality on the internalizations. Cationic dendrimer was shown the highest uptake by HeLa cells, while the anionic and neutral was shown rarely enter the cells. The further studies on internalization of cationic dendrimer provide a method to investigate the detail process of the attachment and further endocytosis of particle. Understanding the internalization of dendrimers may contribute to develop the modification designing for desired applications and targeting cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:08:19Z (GMT). No. of bitstreams: 1
ntu-97-R95548055-1.pdf: 561191 bytes, checksum: 235e040a6d02731ddbb2fd00dcc66121 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1. Intruductoin……………………………………………………….………………... 1
2. Materials and Methods………….………………………………………………... 3
2.1 Chemicals and Materials…………………………………………………… 4
2.2 Materials for Cell Culture…………………………………………………... 5
2.3 Synthesis of fluorecently labeled generation 4 PAMAM-NH2 dendrimers…7
2.4 Synthesis of fluorecently labeled generation 4 PAMAM-OH dendrimers…. 7
2.5 Synthesis of fluorecently labeled generation 3.5 PAMAM-COOH
dendrimer…………………………………………………………………… 9
2.6 Cell culture…………………………………………….………………….. 10
2.7 Cell uptake and Inhibition studies……………………………………….... 10
2.8 Internalization studies………………………………………….………….. 11
2.9 FACS analysis……………………………………….…….……………… 12
2.10 Confocal laser scanning microscopy………..…………..………………… 13
2.11 Fluorescence microscopy studies………………………….….…………... 13
3. Results…………………………………………….………………………………. 15
3.1 Purification and fluorescence spectrum of fluorescently labeled
dendrimers………………………………………………………………… 15
3.2 Time-course cellular uptake of fluorescently labeled dendrimers………… 15
3.3 Effect of low temperature blocked cellular uptake……………….……….. 16
3.4 Influence of surface electricity and endocytotic inhibitors on cellular
uptake…………………………………………………………………….... 17
3.5 Internalization and attachment studies of dendrimer with highest uptake of
three………………………..….…………………………….…………….. 20
4. Discussions………………………………………….………………………......... 23
5. Conclusion………………………………………………………….…………….. 33
參考文獻…………………………………………………………….……….……….. 34
附錄……………………………………………………….…………………………... 41
dc.language.isoen
dc.subject表面電性zh_TW
dc.subject樹枝&#63994zh_TW
dc.subject高分子zh_TW
dc.subject胞噬作用zh_TW
dc.subjectendocytosisen
dc.subjectsurface electricityen
dc.subjectdendrimeren
dc.title不同表面電性之PAMAM樹枝狀高分子於細胞胞噬機制之探討zh_TW
dc.titleThe influence of surface electricity on internalization of Poly (amidoamine) dendrimersen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴秉杉,婁培人,楊台鴻
dc.subject.keyword樹枝&#63994,高分子,胞噬作用,表面電性,zh_TW
dc.subject.keyworddendrimer,endocytosis,surface electricity,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
548.04 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved