Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川
dc.contributor.authorKun-Mu Leeen
dc.contributor.author李坤穆zh_TW
dc.date.accessioned2021-06-08T07:05:19Z-
dc.date.copyright2008-11-25
dc.date.issued2008
dc.date.submitted2008-11-19
dc.identifier.citation[1] Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications. Springer-Verlag, Germany, 2004.
[2] T. Markvart, Solar Electricity. 2nd ed.; John Wiley & Sons, Chichester, 2000.
[3] M. Gratzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
[4] R. H. Bube, Photovoltaic Materials. Imperial College Press, London, 1998.
[5] M. A. Green, Photovoltaic principles, Physica E 14 (2002) 11-17.
[6] D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon P-N junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25 (1954) 676-677.
[7] S. Nakamura, KRI Report No. 8 of Phase XVI. KRI, Inc., Japan, 2005.
[8] M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Solar cell efficiency tables - (Version 26), Progress in Photovoltaics 13 (2005) 387-392.
[9] S. E. Shaheen, D. S. Ginley, G. E. Jabbour, Organic-based photovoltaics. toward lowm-cost power generation, MRS Bull. 30 (2005) 10-19.
[10] M. Gratzel, Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett. 34 (2005) 8-13.
[11] J. G. Xue, B. P. Rand, S. Uchida, S. R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater. 17 (2005) 66-71.
[12] H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells 83 (2004) 125-146.
[13] M. B. Prince, Silicon solar energy converters : Prince, M. B. J. App. Phys. 26 (5): 534-540. May 1955, Sol. Energy 1 (1955) 62-62.
[14] P. Rappaport, The photovoltaic effect and its utilization, RCA Rev. 20 (1959) 373-397.
[15] D. C. Reynolds, G. Leies, L. L. Antes, R. E. Marburger, Photovoltaic effect in cadmium sulfide, Phys. Rev. 96 (1954) 533-534.
[16] D. A. Jenny, J. J. Loferski, P. Rappaport, Photovoltaic effect in GaAs P-N junctions and solar energy conversion, Phys. Rev. 101 (1956) 1208-1209.
[17] M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A-Chem. 164 (2004) 3-14.
[18] C. H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51 (1980) 4494-4500.
[19] M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A-Chem. 164 (2005) 3-14.
[20] M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44 (2005) 6841-6851.
[21] A. N. M. Green, R. E. Chandler, S. A. Haque, J. Nelson, J. R. Durrant, Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films, J. Phys. Chem. B 109 (2005) 142-150.
[22] C. C. Clark, A. Marton, R. Srinivasan, A. A. N. Sarjeant, G. J. Meyer, Triiodide quenching of ruthenium MLCT excited state in solution and on TiO2 surfaces: An alternate pathway for charge recombination, Inorg. Chem. 45 (2006) 4728-4734.
[23] A. Marton, C. C. Clark, R. Srinivasan, R. E. Freundlich, A. A. N. Sarjeant, G. J. Meyer, Static and dynamic quenching of Ru(II) polypyridyl excited states by iodide, Inorg. Chem. 45 (2006) 362-369.
[24] H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Co-II(dbbiP)(2)(2+) complex rivals tri iodide/iodide redox mediator in dye-sensitized photovoltaic cells, J. Phys. Chem. B 105 (2001) 10461-10464.
[25] T. Hannappel, B. Burfeindt, W. Storck, F. Willig, Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film, J. Phys. Chem. B 101 (1997) 6799-6802.
[26] K. Takeshita, Y. Sasaki, M. Kobashi, Y. Tanaka, S. Maeda, Photophysics and electron dynamics in dye-sensitized semiconductor film studied by time-resolved mid-IR spectroscopy, J. Phys. Chem. B 107 (2003) 4156-4161.
[27] D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis, J. K. McCusker, Transient absorption spectroscopy of ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes, J. Phys. Chem. B 106 (2002) 9347-9358.
[28] J. Kallioinen, G. Benko, V. Sundstrom, J. E. I. Korppi-Tommola, A. P. Yartsev, Electron transfer from the singlet and triplet excited states of Ru(dcbpy)2(NCS)2 into nanocrystalline TiO2 thin films, J. Phys. Chem. B 106 (2002) 4396-4404.
[29] J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, T. Q. Lian, Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films, J. Phys. Chem. B 103 (1999) 3110-3119.
[30] T. A. Heimer, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces, J. Phys. Chem. A 104 (2000) 4256-4262.
[31] G. Benko, J. Kallioinen, P. Myllyperkio, F. Trif, J. E. I. Korppi-Tommola, A. P. Yartsev, V. Sundstrom, Interligand electron transfer determines triplet excited state electron injection in RuN3-sensitized TiO2 films, J. Phys. Chem. B 108 (2004) 2862-2867.
[32] J. B. Asbury, N. A. Anderson, E. C. Hao, X. Ai, T. Q. Lian, Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film, J. Phys. Chem. B 107 (2003) 7376-7386.
[33] J. Kallioinen, G. Benko, P. Myllyperkio, L. Khriachtchev, B. Skarman, R. Wallenberg, M. Tuomikoski, J. Korppi-Tommola, V. Sundstrom, A. P. Yartsev, Photoinduced ultrafast dynamics of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films: The influence of sample preparation and experimental conditions, J. Phys. Chem. B 108 (2004) 6365-6373.
[34] G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, V. Sundstrom, Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states, J. Am. Chem. Soc. 124 (2002) 489-493.
[35] Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug, J. R. Durrant, Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias, J. Phys. Chem. B 105 (2001) 7424-7431.
[36] Y. Trachibana, S. A. Haque, I. P. Mercer, J. R. Durrant, D. R. Klug, Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes, J. Phys. Chem. B 104 (2000) 1198-1205.
[37] J. B. Asbury, E. Hao, Y. Q. Wang, H. N. Ghosh, T. Q. Lian, Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films, J. Phys. Chem. B 105 (2001) 4545-4557.
[38] J. Kallioinen, V. Lehtovuori, P. Myllyperkio, J. Korppi-Tommola, Transient absorption studies of the Ru(dcbpy)2(NCS)2 excited state and the dye cation on nanocrystalline TiO2 film, Chem. Phys. Lett. 340 (2001) 217-221.
[39] D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, N. S. Lewis, Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes, J. Phys. Chem. B 105 (2001) 392-403.
[40] G. Sauve, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal, N. S. Lewis, Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes, J. Phys. Chem. B 104 (2000) 6821-6836.
[41] S. Pelet, J. E. Moser, M. Gratzel, Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2, J. Phys. Chem. B 104 (2000) 1791-1795.
[42] I. Montanari, J. Nelson, J. R. Durrant, Iodide electron transfer kinetics in dye-sensitized nanocrystalline TiO2 films, J. Phys. Chem. B 106 (2002) 12203-12210.
[43] M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, N. S. Lewis, Principles and Applications of Semiconductor Photoelectrochemistry
Progress in Inorganic Chemistry 41 (1994) 21-144.
[44] A. Zaban, A. Meier, B. A. Gregg, Electric potential distribution and short-range screening in nanoporous TiO2 electrodes, J. Phys. Chem. B 101 (1997) 7985-7990.
[45] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, Nature of photovoltaic action in dye-sensitized solar cells, J. Phys. Chem. B 104 (2000) 2053-2059.
[46] K. Kalyanasundaram, M. Gratzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177 (1998) 347-414.
[47] S. Namba, Y. Hishiki, Color sensitization of zinc oxide with cyanine dyes, J. Phys. Chem. 69 (1965) 774-780.
[48] B. Oregan, M. Gratzel, A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
[49] A. Hagfeldt, M. Gratzel, Molecular photovoltaics, Acct. Chem. Res. 33 (2000) 269-277.
[50] M. Gratzel, Corrigendum to 'Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells' [J. Photochem. Photobiol. A: Chem. 164 (2004) 3-14], J. Photochem. Photobiol. A-Chem. 168 (2004) 235-235.
[51] A. J. Bard, Integrated Chemical Systems: A Chemical Approach to Nanotechnology. John Wiley & Sons, New York, 1994.
[52] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, M. Muhammed, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B 101 (1997) 2598-2601.
[53] R. Vogel, P. Hoyer, H. Weller, Quantum-Sized Pbs, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem. 98 (1994) 3183-3188.
[54] J. Wang, J. Q. Yan, H. Zhang, AKR-deficiency disturbs the balance of some signal transduction pathways in Arabidopsis thaliana, Plant Physiol. Biochem. 37 (1999) 465-471.
[55] S. Nakamura, T. Takahashi, H. Yamashita, H. Kawakami, Nicotinic acetylcholine receptors and neurodegenerative disease, Alcohol 24 (2001) 79-81.
[56] L. Spanhel, M. A. Anderson, Synthesis of porous quantum-size CdS membranes-Photoluminescence phase-shift and demodulation measurements, J. Am. Chem. Soc. 112 (1990) 2278-2284.
[57] N. G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem. B 104 (2000) 8989-8994.
[58] A. Hagfeldt, M. Gratzel, Molecular photovoltaics, Acct. Chem. Res. 33 (2001) 269-277.
[59] A. Fillinger, D. Soltz, B. A. Parkinson, Dye sensitization of natural anatase crystals with a ruthenium-based dye, J. Electrochem. Soc. 149 (2002) A1146-A1156.
[60] D. Barak, A. Ordentlich, Y. Segall, B. Velan, H. P. Benschop, L. P. A. De Jong, A. Shafferman, Carbocation-mediated processes in biocatalysts: contribution of aromatic moieties, J. Am. Chem. Soc. 119 (1997) 3157-3158.
[61] Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev. 248 (2004) 1381-1389.
[62] M. K. Nazeeruddin, F. DeAngelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 127 (2005) 16835-16847.
[63] N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films, Adv. Mater. 17 (2005) 2349-2355.
[64] D. Zhang, T. Yoshida, K. Furuta, H. Minoura, Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, Journal of Photochemistry and Photobiology A-Chem. 164 (2004) 159-166.
[65] T. Y. D. Zhang, H. Minoura, Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface, Adv. Mater. 15 (2003) 814-817.
[66] S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation, Journal of Photochemistry and Photobiology A-Chem. 164 (2004) 93-96.
[67] S. Uchida, M. Tomiha, N. Masaki, A. Miyazawa, H. Takizawa, Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation, Sol. Energy Mater. Sol. Cells 81 (2004) 135-139.
[68] T. Miyasaka, Y. Kijitori, Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers, J. Electrochem. Soc. 151 (2004) A1767-A1773.
[69] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, A new method to make dye-sensitized nanocrystalline solar cells at room temperature, J. Photochem. Photobiol. A-Chem. 145 (2001) 107-112.
[70] G. Boschloo, J. Lindstrom, E. Magnusson, A. Holmberg, A. Hagfeldt, Optimization of dye-sensitized solar cells prepared by compression method, J. Photochem. Photobiol. A-Chem. 148 (2002) 11-15.
[71] H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, A new method for manufacturing nanostructured electrodes on plastic substrates, Nano Lett. 1 (2001) 97-100.
[72] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, J. R. Durrant, Flexible dye sensitised nanocrystalline semiconductor solar cells, Chem. Commun. (2003) 3008-3009.
[73] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers, Nat. Mater. 4 (2005) 607-611.
[74] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes, Chem. Commun. (2007) 4767-4769.
[75] T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania, J. Electrochem. Soc. 154 (2007) A455-A461.
[76] L. Spiccia, G. B. Deacon, C. M. Kepert, Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands, Coord. Chem. Rev. 248 (2004) 1329-1341.
[77] R. Argazzi, N. Y. Murakami Iha, H. Zabri, F. Odobel, C. A. Bignozzi, Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors, Coord. Chem. Rev. 248 (2004) 1299-1316.
[78] A. S. Polo, M. K. Itokazu, N. Y. Murakami Iha, Metal complex sensitizers in dye-sensitized solar cells, Coord. Chem. Rev. 248 (2004) 1343-1361.
[79] M. K. Nazeeruddin, M. Gratzel, In Comprehensive Coordination Chemistry II, vol. 9, Elsevier, Dordrecht, 2004.
[80] C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes, Chem. Soc. Rev. 29 (2000) 87-96.
[81] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993) 6382-6390.
[82] A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, Sensitization of nanocrystalline TiO2 film by ruthenium(II) diimine dithiolate complexes, J. Photochem. Photobio. A-Chem. 145 (2001) 135-141.
[83] M. K. Nazeeruddin, P. Pechy, M. Gratzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex, Chem. Commun. (1997) 1705-1706.
[84] D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, N. S. Lewis, Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes, J. Phys. Chem. B 105 (2001) 392-403.
[85] R. Argazzi, G. Larramona, C. Contado, C. A. Bignozzi, Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4',4'-tricarboxy-2,2':6',2'-terpyridine and cyanide ligands, J. Photochem. Photobio. A-Chem. 164 (2004) 15-21.
[86] A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, G. Fujihashi, Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes, Inorg. Chem. 40 (2001) 5371-5380.
[87] E. A. M. Geary, L. J. Yellowlees, L. A. Jack, I. D. H. Oswald, S. Parsons, N. Hirata, J. R. Durrant, N. Robertson, Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3'-, 4,4'-, and 5,5'-disubstituted bipyridyl: applications in dye-sensitized solar cells, Inorg. Chem. 44 (2005) 242-250.
[88] G. M. Hasselmann, G. J. Meyer, Sensitization of nanocrystalline TiO2 by Re(I) polypyridyl compounds, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 212 (1999) 39-44.
[89] N. Alonsovante, J. F. Nierengarten, J. P. Sauvage, Spectral Sensitization of Large-Band-Gap Semiconductors (Thin-Films and Ceramics) by A Carboxylated Bis(1,10-Phenanthroline)Copper(I) Complex, Journal of the Chemical Society-Dalton Transactions (1994) 1649-1654.
[90] P. M. Jayaweera, S. S. Palayangoda, K. Tennakone, Nanoporous TiO2 solar cells sensitized with iron(II) complexes of bromopyrogallol red ligand, J. Photochem. Photobio. A-Chem. 140 (2001) 173-177.
[91] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993) 6382-6390.
[92] A. S. Polo, M. K. Itokazu, N. Y. Murakami Iha, Metal complex sensitizers in dye-sensitized solar cells, Coord. Chem. Rev. 248 (2004) 1343-1361.
[93] A. Hagfeldt, M. Graetzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev. 95 (1995) 49-68.
[94] W. Grochala, P. P. Edwards, Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen, Chem. Rev. 104 (2004) 1283-1316.
[95] P. Wang, C. Klein, J.-E. Moser, R. Humphry-Baker, N.L. Cevey-Ha, R. Charvet, P. Comte, S. M. Zakeeruddin, M. Gratzel, Amphiphilic ruthenium sensitizer with 4,4'-diphosphonic acid-2,2'-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells, J. Phys. Chem. B 108 (2004) 17553-17559.
[96] N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angew. Chem. Int. Edit. 45 (2006) 2338-2345.
[97] S. Ruile, O. Kohle, P. Pechy, M. Gratzel, Novel sensitisers for photovoltaic cells: Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine, Inorg. Chim. Acta 261 (1997) 129-140.
[98] D.S. Ahn, S.W. Park, S. Lee, B. Kim, Effects of substituting group on the hydrogen bonding in phenol-H2O complexes: Ab initio study, J. Phys. Chem. A 107 (2003) 131-139.
[99] Z.S. Wang, C.H. Huang, Y.Y. Huang, B.W. Zhang, P.H. Xie, Y.J. Hou, K. Ibrahim, H.J. Qian, F.Q. Liu, Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex, Sol. Energy Mater. Sol. Cells 71 (2002) 261-271.
[100] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, K. C. Ho, A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells, Angew. Chem. Int. Edit. 45 (2006) 5822-5825.
[101] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, K. C. Ho, A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells, Adv. Mater. 19 (2007) 3888-3890.
[102] http://kuroppe.tagen.tohoku.ac.jp/~dsc/dye/collection.htm.
[103] R. Argazzi, N. Y. Murakami Iha, H. Zabri, F. Odobel, C. A. Bignozzi, Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors, Coord. Chem. Rev. 248 (2004) 1299-1316.
[104] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells, J. Phys. Chem. B 107 (2003) 597-606.
[105] S. Ferrere, B. A. Gregg, New perylenes for dye sensitization of TiO2, New J. Chem. 26 (2002) 1155-1160.
[106] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Novel polyene dyes for highly efficient dye-sensitized solar cells, Chem. Commun. (2003) 252-253.
[107] T. Horiuchi, H. Miura, S. Uchida, Highly efficient metal-free organic dyes for dye-sensitized solar cells, Chem. Commun. (2003) 3036-3037.
[108] G. Ramakrishna, H. N. Ghosh, Emission from the Charge Transfer State of Xanthene Dye-Sensitized TiO2 Nanoparticles: A new approach to determining back electron transfer rate and verifying the marcus inverted regime, J. Phys. Chem. B 105 (2001) 7000-7008.
[109] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. Frechet, Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer titania hybrid solar cells, J. Am. Chem. Soc. 126 (2004) 9486-9487.
[110] A. Ehret, L. Stuhl, M. T. Spitler, Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes, J. Phys. Chem. B 105 (2001) 9960-9965.
[111] Q. H. Yao, F. S. Meng, F. Y. Li, H. Tian, C. H. Huang, Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode, J. Mater. Chem. 13 (2003) 1048-1053.
[112] W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell, Coord. Chem. Rev. 248 (2004) 1363-1379.
[113] J. He, G. Benko, F. Korodi, T. Polivka, R. Lomoth, B. Akermark, L. Sun, A. Hagfeldt, V. Sundstrom, Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode, J. Am. Chem. Soc. 124 (2002) 4922-4932.
[114] A. Burke, L. Schmidt-Mende, S. Ito, M. Gratzel, A novel blue dye for near-IR dye-sensitised solar cell applications, Chem. Commun. (2007) 234-236.
[115] S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. DeAngelis, D. DiCenso, M. K. Nazeeruddin, M. Gratzel, Molecular engineering of organic sensitizers for solar cell applications, J. Am. Chem. Soc. 128 (2006) 16701-16707.
[116] Z.S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara, Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar cell performance by structural modification, Chem. Mater. 20 (2008) 3993-4003.
[117] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, A highly efficient organic sensitizer for dye-sensitized solar cells, Chem. Commun. (2007) 4887-4889.
[118] D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gratzel, M. K. Nazeeruddin, Molecular engineering of organic sensitizers for dye-sensitized solar cell applications, J. Am. Chem. Soc. 130 (2008) 6259-6266.
[119] Z. Wang, Y. Huang, C. Huang, J. Zheng, H. Cheng, S. Tian, Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative, Synth. Met. 114 (2000) 201-207.
[120] A. Dhanabalan, J. K. J. van Duren, P. A. van Hal, J. L. J. van Dongen, R. A. J. Janssen, Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells, Adv. Funct. Mater. 11 (2001) 255-262.
[121] C. J. Brabec, C. Winder, N. S. Sariciftci, J. C. Hummelen, A. Dhanabalan, P. A. van Hal, R. A. J. Janssen, A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes, Adv. Funct. Mater. 12 (2002) 709-712.
[122] M. Velusamy, K. R. JustinThomas, J. T. Lin, Y.-C. Hsu, K.-C. Ho, Organic dyes incorporating low-bandgap chromophores for dye-sensitized solar cells, Org. Lett. 7 (2005) 1899-1902.
[123] K. R. J. Thomas, J. T. Lin, Y. C. Hsu, K. C. Ho, Organic dyes containing thienylfluorene conjugation for solar cells, Chem. Commun. (2005) 4098-4100.
[124] A. F. Nogueira, C. Longo, M. A. De Paoli, Polymers in dye sensitized solar cells: overview and perspectives, Coord. Chem. Rev. 248 (2004) 1455-1468.
[125] H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, CoII(dbbip)22+ complex rivals triiodide/iodide redox mediator in dye-sensitized photovoltaic cells, J. Phys. Chem. B 105 (2001) 10461-10464.
[126] G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells, J. Phys. Chem. B 105 (2001) 6867-6873.
[127] H. Nusbaumer, S. M. Zakeeruddin, J. E. Moser, M. Gratzel, An alternative efficient redox couple for the dye-sensitized solar cell system, Chem.-Eur. J. 9 (2003) 3756-3763.
[128] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva, K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide, Sol. Energy Mater. Sol. Cells 69 (2001) 195-199.
[129] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Gratzel, Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics, Adv. Mater. 12 (2000) 1263-1266.
[130] J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, U. Bach, High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination, Appl. Phys. Lett. 79 (2001) 2085-2087.
[131] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole, Sol. Energy Mater. Sol. Cells 55 (1998) 113-125.
[132] J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.-W. Schmidt, D. Haarer, Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material, Synth. Met. 89 (1997) 215-220.
[133] A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. H. Horhold, Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion, Adv. Mater. 12 (2000) 1689-1694.
[134] M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro, Y. Takaoka, A dye sensitized TiO2 photoelectrochemical cell constructed with polymer solid electrolyte, Solid State Ion. 89 (1996) 263-267.
[135] K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, L. A. A. De Silva, Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite and TiO¬2 films with a polymer electrolyte, Chem. Mater. 11 (1999) 2474-2477.
[136] Y. Ren, Z. Zhang, E. Gao, S. Fang, S. Cai, A dye-sensitized nanoporous TiO2 photoelectrochemical cell with novel gel network polymer electrolyte, J. Appl. Electrochem. 31 (2001) 445-447.
[137] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida, Quasi-solid state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, J. Phys. Chem. B 105 (2001) 12809-12815.
[138] M. Matsumoto, Y. Wada, T. Kitamura, K. Shigaki, T. Inoue, M. Ikeda, S. Yanagida, Fabrication of solid-state dye-sensitized TiO2 solar cell using polymer electrolyte, Bull. Chem. Soc. Jpn. 74 (2001) 387-393.
[139] A. F. Nogueira, J. R. Durrant, M. A. De Paoli, Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte, Adv. Mater. 13 (2001) 826-832.
[140] E. Stathatos, P. Lianos, U. Lavrencic-Stangar, B. Orel, A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol-gel route, Adv. Mater. 14 (2002) 354-357.
[141] G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki, P. Falaras, A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells, J. Photochem. Photobio. A-Chem. 149 (2002) 191-198.
[142] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Lett. 2 (2002) 1259-1261.
[143] P. Wang, S. M. Zakeeruddin, M. Gratzel, Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells, J. Fluor. Chem. 125 (2004) 1241-1245.
[144] C. Longo, A. F. Nogueira, M.-A. De Paoli, H. Cachet, Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy, J. Phys. Chem. B 106 (2002) 5925-5930.
[145] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun. (2002) 374-375.
[146] M. A. K. L. Dissanayake, L. R. A. K. Bandara, R. S. P. Bokalawala, P. A. R. D. Jayathilaka, O. A. Ileperuma, S. Somasundaram, A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell, Mater. Res. Bull. 37 (2002) 867-874.
[147] O. A. Ileperuma, M. A. K. L. Dissanayake, S. Somasunderam, L. R. A. K. Bandara, Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes, Sol. Energy Mater. Sol. Cells 84 (2004) 117-124.
[148] R. Komiya, L. Han, R. Yamanaka, A. Islam, T. Mitate, Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 123-127.
[149] J. Kang, W. Li, X. Wang, Y. Lin, X. Li, X. Xiao, S. Fang, Gel polymer electrolytes based on a novel quaternary ammonium salt for dye-sensitized solar cells, J. Appl. Electrochem. 34 (2004) 301-304.
[150] S. R. Scully, M. T. Lloyd, R. Herrera, E. P. Giannelis, G. G. Malliaras, Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte, Synth. Met. 144 (2004) 291-296.
[151] Y. J. Kim, J. H. Kim, M. S. Kang, M. J. Lee, J. Won, J. C. Lee, Y. S. Kang, Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells, Adv. Mater. 16 (2004) 1753-1758.
[152] J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang, Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles, Chem. Commun. (2004) 1662-1663.
[153] J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, Y. S. Kang, Poly(butyl acrylate)/NaI/I2 electrolytes for dye-sensitized nanocrystalline TiO2 solar cells, Solid State Ion. 176 (2005) 579-584.
[154] W. Y. Li, J. J. Kang, X. P. Li, S. B. Fang, Y. Lin, G. Q. Wang, X. R. Xiao, A novel polymer quaternary ammonium iodide and application in quasi-solid-state dye-sensitized solar cells, J. Photochem. Photobiol. A-Chem. 170 (2005) 1-6.
[155] D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, J. S. Song, Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte, J. Power Sources 149 (2005) 112-116.
[156] Z. Lan, J. H. Wu, D. B. Wang, S. Hao, J. M. Lin, Y. F. Huang, Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI/I2, Sol. Energy 80 (2006) 1483-1488.
[157] Z. Lan, J. H. Wu, J. M. Lin, M. L. Huang, S. Yin, T. Sato, Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells, Electrochim. Acta 52 (2007) 6673-6678.
[158] D. Chen, Q. Zhang, G. Wang, H. Zhang, J. H. Li, A novel composite polymer elec
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26292-
dc.description.abstract本論文主要探討各材料的改進或系統改變對染料敏化太陽電池光電轉換行為影響,同時也針對元件效率及穩定性進行探討。
本文的第一部份為針對染料敏化太陽電池進行最適化探討,藉由高分子分子量控制,製備不同孔徑分布之TiO2工作電極。其中以P2P1分布之TiO2工作電極有最佳效率表現,在電極含有光散射粒子條件下,其光電轉換效率可達9.04 %。並藉由雷射光物理分析及利用交流阻抗分析,發現P2P1-TiO2電極有最低之界面電子轉移阻抗及最長之電子壽命。 另一方面,在低溫製備TiO2工作電極製程方面,本實驗室首先提出將奈米碳管導入低溫製備之TiO2電極中並應用於染料敏化太陽電池。藉由控制奈米碳管分布(0.1 wt%)及Ti-前趨物比例 (TTIP/TiO2=0.08),可製備出光電轉換效率達5.02%之低溫染料敏化太陽電池。 同時,我們亦針對Miyasaka教授團隊所開發之低溫TiO2漿料來製備低溫塑膠基材之染料敏化太陽電池,並以中央大學吳春桂教授實驗室所開發之SJW-E1染料進行最適化研究,同時針對TiOx緻密層、各種共吸附劑結構及元件穩定性進行探討。最佳化後之低溫塑膠染料敏化電池效率於100 mW/cm2光強度下可達6.31%,並發現以SJW-E1為染料之元件在光照穩定性測試下,比N719有更好的穩定性表現。
本文的第二部分乃針對中研院化學所林建村教授實驗室所合成之有機染料進行染料敏化太陽電池元件測試及光電化學性質探討。最佳元件表現可達6.15 % (相對於N3系統為7.86 %)。研究發現,當在第三oligothiophene接有arylamibes之染料,元件會有較高的開環電位。同時進行雷射光物理及交流阻抗分析推論在第三oligothiophene接有arylamibes之染料可以抑制於TiO2上的電子與氧化態的染料與I3-進行再結合反應。同時理論計算結果發現,在第三oligothiophene接有arylamibes之染料在在電子激發態時有較高之電荷傳遞效率。
在第五章中,將探討光譜互補式之染料共敏化行為於塑膠基材之低溫染料敏化太陽電池應用。研究發現,兩共敏化系統分別為N719/FL 與black dye/FL系統之染料敏化太陽電池之元件光電效能表現比使用單一種類染料的太陽電池來的高,並分別可達到5.10%與3.78%。然而在FL /Chl-e6共敏化系統便沒有電流加成現象,元件效率表現只介於兩種染料單一存在之間。並由交流阻抗分析此三種共敏化系統發現,N719/FL 與black dye/FL系統共敏化後,元件的TiO2特徵頻率與單一染料條件維持相同,甚至往更低頻位移。然而FL /Chl-e6共敏化系統之元件TiO2特徵頻率甚至比單一FL染料高,意味著FL /Chl-e6共敏化後因染料聚集現象使得電子於TiO2中的電子壽命更低。
本文的第三部分為探討膠態高分子電解質之製備及應用於染料敏化太陽電池。此部分將分別討論兩種膠態高分子電解質系統。首先歸納在電解質的有機溶劑之各項物化性質中,donor number為影響染料敏化太陽電池表現之重要影響因素。同時,在PVDF-HFP膠態高分子電解質中,以有機碘鹽(TBAI)為氧化還原對之元件表現,比無機碘(LiI)之表現來的佳。在含有5 wt% 的PVDF-HFP條件下,可得與液態電解質相仿之效率表現。並且在含有0.8 M TBAI與0.12 M I2時有最佳電流表現。進而導入二氧化矽奈米粒子於PVDF-HFP電解質中,由於降低PVDF-HFP之結晶度,明顯增加了離子傳輸路徑,因此提升了離子擴散係數,並使得元件有更好的光電流表現。在100 mW/cm2的光照下,最佳光電流可達14.04 mA/cm2,開環電位0.71 V,光電轉換效率為5.97 %。 另外,以同時聚合法方式製備膠態高分子電解質研究中,將低黏度之反應溶液導入奈米孔洞之TiO2電極中,再進行聚合反應使電解質固化,期能解決高分子電解質與工作電極間之界面阻力以提升光電轉換電流。研究發現,以B4Br作為交聯劑所製備之膠態電解質由於具有微相分離現象,使得有較高之導離度及元件電流表現。藉由將具可反應性官能基結構的分子與染料共吸附,除了可以作為共吸附劑降低染料之聚集現象外,並可在電解質的聚合過程中與TiO2電極界面間形成化學鍵結,可有效降低界面阻抗使得光電流從7.72 mA/cm2提升至10.00 mA/cm2。為了降低TiO2電極內之離子傳遞阻力,本研究藉由導入不同含量之均一粒徑PMMA於TiO2電極中,經燒結後製備含有350 nm孔洞之TiO2電極。經實驗發現在PMMA/TiO2比例為3.75時有一最佳結果,使元件之光電轉換效率從3.61%有效地提升至5.81 %。
最後在本文的第四部分,一系列之poly(3,4-alkylenedioxythiophene)導電高分子以電化學聚合法製備於FTO玻璃上,並將之作為染料敏化太陽電池之對電極進行探討。實驗發現元件以PProDOT-Et2作為對電極有最佳之效率表現為7.88 %與對白金對電極表現相當(7.77 %)。元件之FF很明顯的受到PProDOT-Et2電聚合電量之不同而改變,並且當電聚合電量高於80 mC/cm2時,因高分子薄膜之聚集現象,降低的氧化還原的活性面積,使得元件之光電流及光電轉換效率明顯下降。將PProDOT-Et2導電高分子薄膜用於低溫塑膠染料敏化太陽電池亦有類似的趨勢表現,其最佳光電轉效率在100 mW/cm2光強度下為5.20 %,相對於以白金對電極之染料敏化太陽電池為5.11 %。
zh_TW
dc.description.abstractThe main purpose of this thesis is to investigate the behaviors of new approaches in electrodes (working and counter), sensitizers and gel polymer electrolytes for dye-sensitized solar cells (DSSCs) and discussing the influences on the cell performance and stability of DSSCs.
In the first part of this thesis (Chapter 2 and 3), the optimization of solar energy conversion efficiency of DSSCs was investigated by the tuning of TiO2 photoelectrode’s morphology. Double-layered TiO2 photoelectrodes were designed by the coating of TiO2 suspension incorporated with low and high molecular weight poly(ethylene glycol) as a binder. Among four types of TiO2 electrodes, the P2P1 showed the highest efficiency under the conditions of identical film thickness and constant irradiation. This can be explained by the larger pore size and higher surface area of P2P1 TiO2 electrode than the other materials and these two factors assist for the facile transport of I3-/I- ion couple through the TiO2 matrix. The best efficiency (h) of 9.04% for a solar cell was obtained by introducing the light scattering particles to the TiO2 electrode measured under AM 1.5G.
As for the part of low-temperature fabricated DSSC, the TiO2 film with the TTIP/TiO2 molar ratio of 0.08 has the best conduction. Meanwhile, the charge transport resistance at the TiO2/dye/electrolyte interface increased as a function of the MWCNT concentration, ranged from 0.1 to 0.5 wt%, due to a decrease in the surface area for dye adsorption. The DSSC with the TiO2 containing 0.1 wt% of MWCNT resulted in a JSC of 9.08 mA/cm2 and a cell conversion efficiency of 5.02 %. On the other hand, TiO2 film prepared by using binder-free TiO2 paste which developed by Prof. Miyasaka’s group was also used in plastic DSSC to optimal the SJW-E1 dye which synthesized by Prof. Wu’s group. The effects of TiOx buffer layer and co-adsorbents as well as long-term stability of plastic DSSCs were investigated. The TiOx buffer layer not only benefited the adhesion between TiO2 thin film and ITO/PEN substrate but also reduced the electron recombination, resulting in the improvement of the FF and conversion efficiency of cells. The optimized solar cell based on SJW-E1 showed a high efficiency of 6.31 % at 100 mW/cm2 (AM 1.5G), and SJW-E1 based solar cell showed a better stability than that of N719 based after 500 h light soaking
test.
In the second part of this thesis (Chapter 4), the co-sensitization of dyes for the complementary in the spectral characteristics in plastic DSSCs was investigated. Two co-sensitization systems for the plastic DSSCs, including N719/FL and black dye/FL showed enhanced photovoltaic performances compared with that of each dye
individually. The optimal conversion efficiencies of N719/FL and black dye/FL DSSCs reached 5.10 % and 3.78 %, respectively, which were higher than that of individual sensitizers. However, for the system co-sensitized with FL and Chl-e6, the cell performances only lay in between that of each dye. From the EIS analysis, the characteristic frequencies (C.F.) at TiO2/dye/electrolyte interface for N719/FL and black dye/FL are kept the same or lower than that of individual dyes. While for the FL /Chl-e6 co-sensitized DSSCs, the C.F. were higher than that based on only FL, indicating that they had shorter electron lifetime in the TiO2 electrode after co-sensitization.
In the third part of this thesis (Chapter 5), two kinds of gel polymer electrolytes were developed and used in DSSCs. At the beginning, it was found that the donor number of solvent in electrolyte is the one of the key factors that effect the photovoltaic performance of DSSC. Meanwhile, the quasi-solid state DSSCs were fabricated with polyvinyidene fluoride-co-hexafluoro propylene (PVDF-HFP) in methoxy propionitrile (MPN) as gel polymer electrolyte (GPE), tetrabutylammonium iodide/iodine as redox couple, 4-TBP as additive and nano-silica as fillers. The energy
conversion efficiency of the cell with 5 wt% PVDF-HFP is comparable to that one obtained in liquid electrolyte system. Solar cell containing PVDF-HFP with 0.8 M of
TBAI and 0.12 M of I2 shows maximum photocurrent. Moreover, the addition of 1wt% nano-silica is found to improve the at-rest durability and the performance of the
solar cell. A photocurrent of 14.04 mA/cm2, a VOC of 0.71 V and an overall conversion efficiency of 5.97 % under 100 mW/cm2 irradiation was observed for the best performance of a solar cell in this work. On the other hand, the ionic conductivities and performances of DSSCs of GPEs prepared by in situ polymerization with different cross-linkers were investigated. The poly(imidazole-co-butylmethacrylate)-based GPE containing the B4Br cross-linker showed a higher ionic conductivity, due to the formation of micro-phase separation that resulted in an increase of ion transport paths in the GPE. Moreover, a co-adsorbent, (4-pyridylthio) acetic acid, co-adsorbed with N3 dye on the TiO2 electrode not only reduced dye aggregation, but also reacted with the cross-linkers in the GPE at the TiO2/GPE interface after gelling, thus the value of JSC significantly increased from 7.72 to 10.00 mA/cm2. In addition, in order to reduce the ionic diffusion resistance within the TiO2 electrode, incorporation of monodispersed PMMA in the TiO2 paste was considered. With the optimal volume ratio of PMMA/TiO2 (v/v = 3.75), the micro-porous TiO2 electrode exhibited larger pores (ca. 350 nm) uniformly distributed after sintering, and the ionic diffusion resistance within the TiO2 film could significantly be reduced. The cell conversion efficiency increased from 3.61 to 5.81% under illumination of 100 mW/cm2, an improvement of ca. 55 %.
In the fourth part of this thesis (Chapter 6), a series of
poly(3,4-alkylenedioxythiophene) counter electrodes prepared by electrochemical polymerization on the fluorine-doped tin oxide (FTO) glass substrate were incorporated in the platinum-free DSSCs. Cells fabricated with a PProDOT-Et2 counter electrode showed a higher conversion efficiency of 7.88 % compared to cells fabricated with PEDOT (3.93 %), PProDOT (7.08 %), and sputtered-Pt (7.77 %) electrodes. The FF was strongly dependent on the deposition charge capacity of the PProDOT-Et2 layer, but the aggregation of PProDOT-Et2 in higher deposition capacities (> 80 mC/cm2) resulted in decreases in JSC and the cell conversion efficiency. Incorporating the best ProDOT-Et2 film (40 mC/cm2) as the counter electrode in plastic DSSC was compared and showed similar tendency as mentioned above. The cell fabricated with a PProDOT-Et2 counter electrode showed a higher conversion efficiency of 5.20 % compared with that fabricated with sputtered-Pt (5.11%) electrodes under the illumination of 100 mW/cm2 (AM 1.5G).
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:05:19Z (GMT). No. of bitstreams: 1
ntu-97-D93549007-1.pdf: 18820674 bytes, checksum: 3416af754ce9471bbd997bf821fc5190 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgement
Abstract (中文摘要) I
Abstract (English) IV
Table of contents VII
List of tables XIV
List of figures XVIII
Nomenclatures XXXI
Chapter 1 Introduction 1
1-1 Solar Cells 1
1-1-1 Photovoltaic Cells 4
1-1-2 Photoelectrochemical Cells for Solar Energy Conversion 6
1-1-2-1 Photochemistry of Semiconductor-Liquid Junctions 6
1-1-2-2 Factors that Determine Conversion Efficiency of a Solar Cell 8
1-1-3 Dye-Sensitized Solar Cells 10
1-1-3-1 Challenges to Further Improvement 14
1-1-3-2 Mechanisms and Models 15
1-2 Review of the Dye-Sensitized Solar Cells (DSSCs) 20
1-2-1 Mesoporous Photoanode 20
1-2-2 Dye/Sensitizer 27
1-2-2-1 Metal polypyridine complexes dye 27
1-2-2-2 Organic Dye 36
1-2-3 Electrolyte 41
1-2-4 Counter Electrode 46
1-3 Motivation and Research Objectives 50
1-4 Measurement of DSSC performance 53
Chapter 2 Preparation and Investigation on High Performance TiO2 Electrodes
for DSSCs 55
2-1 Introduction 55
2-2 Experimental 56
2-2-1 Materials and Reagents 56
2-2-2 Preparation of TiO2 Pastes 56
2-2-3 Fabrication of Double-Layered TiO2 Electrodes and Cells 57
2-2-4 Analysis Methods and Instruments 58
2-3 Results and Discussions 61
2-3-1 The Electron Transport Kinetics of TiO2 Electrodes in DSSCs 61
2-3-2 Influence of TiO2 Coating Morphology on the Performance of DSSCs 68
2-3-2-1 Properties of P1 and P2 TiO2 Electrodes 68
2-3-2-2 EIS and laser Induced Transient Photovoltage Analysis 68
2-3-2-3 Photoelectrochemical Characteristics of DSSCs 73
2-4 Conclusions 77
Chapter 3 Development of Low-Temperature Fabricated TiO2 Electrodes for
DSSCs 78
3-1 Introduction 78
3-2 Experimental 80
3-2-1 Materials and Reagents 80
3-2-2 Preparation of TiO2 electrodes 80
3-2-3 Cell assembly of DSSCs 81
3-2-4 Instruments and Measurements 82
3-3 Results and Discussions 83
3-3-1 Effects of Different TTIP/TiO2 Molar Ratios on the Performance of
DSSCs 83
3-3-2 Effects of TiO2 Electrode Thickness on the Performance of DSSCs 92
3-3-3 Effect of Light Intensity on the Performance of DSSCs 93
3-3-4 Effects of Light Scattering Particles and Thermal Treated Conditions
for the TiO2 Electrode 96
3-3-5 Incorporating Carbon Nanotubes in a Low-Temperature
Fabrication Process for DSSCs 100
3-3-6 Stability and High Performance Plastic Dye-Sensitized Solar Cells
based on a High Light-Harvesting Capability Ruthenium Sensitizer 109
3-4 Conclusions 123
Cpapter 4 Investigation on Co-Sensitization and Light Harvesting for
Plastic Dye-Sensitized Solar Cells 124
4-1 Introduction 124
4-2 Experimental 127
4-2-1 Materials and Reagents 127
4-2-2 Sample Preparation 127
4-3 Results and Discussions 129
4-4 Conclusions 142
Chapter 5 Preparation and Characterization of Gel Polymer Electrolyte for
DSSCs 143
5-1 Introduction 143
5-2 Experimental 146
5-2-1 Materials and Reagents 146
5-2-2 Preparation of TiO2 Electrode and Gel Polymer Electrolytes 146
5-2-3 Cell assembling and Measurements 147
5-3 Results and Discussions 150
5-3-1 PVDF-HFP based Gel Polymer Electrolytes (GPEs) 150
5-3-2 Gel Polymer Electrolytes Prepared by In-Situ Polymerization and
Effects of Micro-Porous TiO2 Electrode on DSSCs 174
5-3-2-1 Effect of the Cross-Linker Structures on DSSCs 174
5-3-2-2 Effect of Dual-Functional Co-adsorbent on DSSCs 176
5-3-2-3 Effect of Micro-Porous TiO2 Electrodes on DSSCs 178
5-4 Conclusions 181
Chapter 6 A High-Performance Counter Electrode based on
Poly(3,4-alkylenedioxythiophene) for DSSCs 182
6-1 Introduction 182
6-2 Experimental 184
6-2-1 Materials and Reagents 184
6-2-2 Preparation of Counter Electrodes and TiO2 Electrodes 184
6-2-3 Cell Assembly and Measurements of the DSSCs 185
6-3 Results and Discussions 187
6-3-1 Characterization of Different Conducting Polymer Films and the
Influence of the Deposition Charge Capacity on the Conformation
and Catalyst Effects 187
6-3-2 Influences of the Conducting Polymers as the Counter Electrodes
and Electrodeposition Capacity on the Photovoltaic Performances
of DSSCs 193
6-3-3 Photovoltaic Performances of Low-Temperature Fabricated Plastic
DSSCs with ProDOT-Et2 Counter Electrodes 199
6-4 Conclusions 202
Chapter 7 Conclusions and Suggestions 203
7-1 Conclusions 203
7-1-1 The effect of TiO2 Electrode Morphology and Preparing Parameters
on Electron Transport Kinetic and Solar Cell Performance 203
7-1-2 Synthesis of Novel Organic Dyes and their Applications in DSSCs 204
7-1-3 Preparation and characterization of Gel Polymer Electrolytes 205
7-1-4 Development and Characterization the High Performance
Counter Electrodes for DSSCs 206
7-2 Suggestions 206
7-2-1 Improvement of Photovoltaic Parameters 206
7-2-2 The Electrolyte/Mediator 207
7-2-3 The Dye Sensitizer 207
Chapter 8 References 209
Appendix A Theoretic power conversion efficiency 239
A-1 Solar spectrum 239
A-2 Charge transfer and power efficiency 241
Reference 246
Appendix B Effects of Co-adsorbate and Additive on the Performance of
DSSCs-A Photophysical Study 248
B-1 Introduction 248
B-2 Experimental 249
B-2-1 Materials and Reagents 249
B-2-2 Cell assembly of DSSCs 249
B-2-3 Measurement and Instruments 250
B-3 Results and Discussions 252
B-4 Conclusions 260
References 261
Appendix C Enhancing the Performance of DSSC based on a Novel Organic
Dye by Incorporating TiO2 Nanotube in a TiO2 Nanoparticle Film 263
C-1 Introduction 263
C-2 Experimental 264
C-3 Results and Discussions 266
C-3-1 The Photoelectrochemical Properties of FL dye1 and the
Photovoltaic Performance of the DSSCs 266
C-3-2 The Influences of Incorporating the TiO2 Nanotube (TNT) in
a TiO2 Nanoparticle Film on the Cell Performance of the DSSCs 274
C-4 Conclusions 285
References 286
Appendix D Curriculum Vitae 289
 
List of Tables
Table 1-1 Various types of solar cells: materials, efficiency, and features. 3
Table 1-2 A partial list of fabricating methods in plastic DSSCs. 26
Table 1-3 A partial list of of Ru-based dyes for DSSCs. 31
Table 1-4 A partial list of organic dyes for DSSCs. 37
Table 1-5 A partial list of gel polymer electrolytes 44
Table 1-6 A partial list of typical performances of DSSCs with different
types of counter electrodes. 49
Table 2-1 Cell performances of the DSSCs with TiO2 films annealed at
different temperatures. 63
Table 2-2 The specific surface area, pore diameter, pore volume and
average particle diameter of P1 and P2 TiO2 photoelectrodes
obtained from BET measurements and SEM micrographs. 70
Table 2-3 Performances of DSSCs with various TiO2 composite electrodes. 72
Table 2-4 Photovoltaic performances of DSSCs having two layers of P2P1
TiO2 electrodes with and without light scattering particles. 75
Table 3-1 The BET data, electron lifetimes and cell performances of
DSSCs at 100 mW/cm2 based on different TTIP/TiO2 molar
ratios in the paste used for TiO2 electrode preparation. 84
Table 3-2 The dye loading, electron lifetimes and cell performances of
DSSCs (measured under 100 mW/cm2) based on different
thickness of TiO2 electrodes. 92
Table 3-3 The photovoltaic performances and impedance data of the DSSCs
with low temperature fabricated TiO2 electrode containing
various amounts of MWCNTs measured under 100 mW/cm2. 104
Table 3-4 The dye loading on TiO2 electrodes and photovoltaic performances
of plastic DSSCs based on SJW-E1 dye with various conditions
of co-adsorbents under the illumination of 100 mW/cm2. 118
Table 4-1 The photovoltaic performances of plastic DSSCs based on
various dyes and co-sensitizers systems under the illumination of
100 mW/cm2. 135
Table 5-1 Photovoltaic parameters and electron lifetimes of DSSCs obtained
with different solvents. 152
Table 5-2 The electrolyte parameter and the cell performances of the
DSSCs based on gel polymer electrolytes with various wt%
of PVDF-HFP. 157
Table 5-3 Cell performances of the DSSCs containing various concentrations
of TBP. 165
Table 5-4 The electrolyte parameters and the cell performances of the
DSSCs based on gel polymer electrolytes containing different
wt% of nano-SiO2. 167
Table 5-5 Ionic diffusion coefficients of I- and I3-, and the cell performances
of dye-sensitized solar cells (DSSCs) with
poly(imidazole-co-butylmethacrylate) based GPEs containing
various cross-linkers and SiO2. 175
Table 6-1 Cell performances of DSSCs based on different kinds of
counter electrode materials. These cell performances were
measured under illumination at 100 mW/cm2. 190
Table 6-2 The RDE analysis and photovoltaic parameters of plastic-DSSCs
based on PProDOT-Et2 with various deposited charge capacities. 200
Table A-1 Parameters of the maximum efficiency,
Table B-1 The photovoltaic performance of the DSSCs based on BD and
FL containing different concentrations of DCA. 255
Table B-2 The effect of addition of GuSCN in the electrolyte on the
photovoltaic performance of the DSSC (GuSCN = 0.2 M). 256
Table B-3 Comparison of electron lifetime and electron diffusion
coefficient on the TiO2 electrode containing DCA in the absence
and presence of GuSCN. 259
Table C-1 Photoelectrochemical properties of FL and N3 dye. 269
Table C-2 The fitting data from Nyquist plot of the DSSCs based on
various amounts of TNT in nanoparticle TiO2 film measured under
100 mW/cm2. 278
Table C-3 The average electron lifetimes and solar cell performances of
the DSSCs containing FL and N3 dye, respectively. 279
Table C-4 The photovoltaic parameters of the DSSCs with FL under
different incident light intensities. 281

 
List of Figures
Fig. 1-1 Basic structure of a silicon based solar cell and its working mechanism. 5
Fig. 1-2 The three known methods by which solar energy can be converted
into usable chemical and/or electrical energy. 7
Fig. 1-3 Typical J-V behavior of a solar cell generated by measuring the
current as an applied potential is scanned between the working
and counter electrodes. 9
Fig. 1-4 Schematic diagram of structure and function of a typical TiO2
based dye-sensitized solar cell. 11
Fig. 1-5 The key factors of each component in DSSC. 12
Fig. 1-6 Photocurrent action spectra of nanocrystalline TiO2 films without
and with chemisorbed monolayers of ruthenium pyridyl-charge
transfer sensitizers. 13
Fig. 1-7 Band-edge positions of semiconductors with respect to several
redox couples in aqueous solution at pH 1. Positions are given
both as potentials versus NHE and as energies versus the electron
in vacuum. 22
Fig. 1-8 Surface and cross sectional SEM images of a rutile (a, b) and an
anatase (c, d) films coated on FTO glass and annealed at 500 oC. 22
Fig. 1-9 Comparison of J-V curves of DSSCs employing rutile and anatase
films of the same thickness under 1 sun illumination. 23
Fig. 1-10 (a) Absorption spectra of dye-covered rutile and anatase films.
(b) IPCE spectra of DSSCs based on rutile and anatase films. 23
Fig. 1-11 Comparison of the electron diffusion coefficient (De) of dye
sensitized rutile- and anatase- films as a function of the JSC at
680-nm illumination. 24
Fig. 1-12 Individual steps of lift-off and transfer process. In the upper row,
the preparation of the transfer layer on the spare substrate with a
thin gold layer, as well as the lift-off process, is depicted. In the lower row, the preparation of the second substrate with the adhesion
layer and the transferred porous layer, as well as the
subsequent low-temperature sintering, is illustrated. 25
Fig. 1-13 Molecular structures of (a) N3 and (b) black dyes. 28
Fig. 1-14 The carboxyl groups are directly coordinated to the surface titanium
ions producing intimate electronic contact between the dye and
the semiconductor. 29
Fig. 1-15 Possible binding modes of a COOH group to a metal oxide (TiO2). 29
Fig. 1-16 Molecular orbital diagram for ruthenium complexes anchored to the
TiO2 surface by a carboxylated bipyridyl ligand. The visible
light absorption of these types of complexes is a metal-to-ligand
charge transfer (MLCT) transition. 30
Fig. 1-17 Structure of the hole conductor spiro-OMeTAD. 42
Fig. 1-18 Framework of this dissertation 53
Fig. 2-1 Morphological structure of the different TiO2 electrodes obtained
by successive coating of P1 and P2 TiO2 pastes on FTO substrate. 60
Fig. 2-2 XRD patterns of the TiO2 film annealed at different temperatures. 62
Fig. 2-3 SEM images of the TiO2 film annealed at different temperatures. 62
Fig. 2-4 (a) EIS spectra of the DSSCs with TiO2 film annealed at
different temperatures; (b) Equivalent circuit for (a). 64
Fig. 2-5 (a) the electron lifetimes and (b) electron diffusion coefficients of
bare and dyed TiO2 film annealed at different temperatures. 66
Fig. 2-6 (a) the electron lifetimes and (b) electron diffusion coefficients of
bare and dyed TiO2 film containing different contents of PEG. 67
Fig. 2-7 The SEM images showing the surface morphologies of P1 and P2
TiO2 electrodes, respectively, where P1 and P2 contain the binder
PEG with molecular weights of 20000 and 200000 respectively in the TiO2 paste. 69
Fig. 2-8 BJH desorption pore volume distribution of P1 and P2 TiO2 electrode. 69
Fig. 2-9 (a) Nyquest plots and (b) Bode phase plots of the DSSCs based
on various TiO2 electrode materials. 71
Fig. 2-10 The transient photovoltage measurement of various TiO2 electrodes
under identical conditions. 72
Fig. 2-11 The IPCE action spectra of DSSCs having P2P1 TiO2 electrodes with
and without light scattering particles, respectively. 75
Fig. 2-12 J-V curve for the DSSC exhibiting the best performance. 76
Fig. 3-1 SEM images of TiO2 electrodes prepared in different TTIP/TiO2
molar ratios (a) 0.08 and (b) 0.20. 85
Fig. 3-2 Electrochemical impedance spectra of DSSCs based on
different TTIP/TiO2 molar ratios measured at VOC, 100 mW/cm2. (a)
and (b) are Nyquist plots. Fig 3-2(b) is an enlargement of Fig. 3-2(a).
(c) is Bode phase plot. 88
Fig. 3-3 Transient photovoltage measurements of various TiO2
electrodes prepared with different molar ratios of TTIP/TiO2. 90
Fig. 3-4 (a) electron transport resistance, (b) capacitance, and (c) time constant
of DSSCs based on different TTIP/TiO2 molar ratios were obtained
from impedance measurement in the dark by applying various biases. 91
Fig. 3-5 Electrochemical impedance spectra of DSSCs based on various
thickness of TiO2 electrodes measured at VOC, 100 mW/cm2. (a)
Nyquist plot and (b) Bode phase plot. 95
Fig. 3-6 Electrochemical impedance spectra of DSSC based on TTIP/TiO2
molar ratio of 0.08 and the TiO2 thickness of 17.2 mm measured under
10, 60, and 100 mW/cm2. (a) Nyquist plot and (b) Bode phase plot. 96
Fig. 3-7 (a) The variation of current density and cell conversion efficiency
of DSSCs based on the TiO2 electrode treatment at 150 oC for
various annealing times up to 12 h. (b) The XRD patterns of P25
TiO2 without/with sintering at 500 oC for 0.5 h are shown, respectively,
in curves (1) and (2). The XRD patterns of TiO2 film obtained from
the TTIP precursor and sintered at 150 oC for 0.5 h and 12 h are
shown, respectively, in curves (3) and (4). 98
Fig. 3-8 (a) The sketch plots of different TiO2 electrodes. (b) J-V curves of
DSSCs based on different collocations of TiO2 electrodes. 99
Fig. 3-9 TEM images of (a) MWCNT and (b) P25 TiO2. (c) and (d) are the
SEM images of the side view of 0.1 wt% MWCNT/TiO2 film. 101
Fig. 3-10 Electrochemical impedance spectra of the DSSCs based on
TiO2 electrode with different weight percents of MWCNTs measured
at -0.8 V, 100 mW/cm2. (a) Nyquist plot and (b) Bode phase plot. 104
Fig. 3-11 Transient photovoltage measurements of the DSSCs with various
TiO2 electrodes prepared with or without 0.1 wt% MWCNT. 105
Fig. 3-12 The EIS measurement of the DSSCs with various TiO2 electrodes
having various ratios of MWCNTs in the dark and applied -0.8 V. 106
Fig. 3-13 The time constant of electron in TiO2 electrode of the DSSCs based
on different wt% of MWCNTs. The impedance measurement and the calculation are recorded in the dark and various applied biases. 107
Fig. 3-14 EIS of the DSSCs based on 0.1 wt% MWCNT/TiO2 film with
different electrolytes measured at -0.8 V, 100 mW/cm2. (a) Nyquist
plot; (b) Bold phase plot. 108
Fig. 3-15 The J-V curves of DSSCs based on 0.1 wt% MWCNT/TiO2 film
with different electrolytes. 108
Fig. 3-16 The cell performances of plastic DSSCs based on SJW-E1 dye
with various thicknesses of low temperature fabricated TiO2 films:
(a) JSC and energy conversion efficiency, (b) IPCE active spectra. 110
Fig. 3-17 The properties of ITO/PEN substrates with and without sputtered
TiOx film. (a) The transmittances in the region of 350-800 nm. (b)
The CV measurement in AN solution containing 10 mM LiI, 1 mM I2
and 0.1 M LiClO4. 113
Fig. 3-18 The photovoltaic performances of plastic DSSCs based on
ITO/PEN substrates with and without sputtered TiOx film. The
thickness of TiO2 electrode was ca. 7 mm. 114
Fig.3-19 The chemical structures of co-adsorbents. 114
Fig.3-20 Absorption spectra of SJW-E1 dye with or without DCA on TiO2
films (ca. 2 mm thick) and in DMF, respectively. 115
Fig.3-21 The optimal photovoltaic performances of plastic DSSCs based
on SJW-E1 and N719, respectively. The composition of electrolyte
was 0.4 M LiI+0.4 M TBAI+0.02 M I2+0.3 M NMB in AN. (a)
J-V curves and (b) the IPCE spectra. 119
Fig.3-22 The relationship of electron lifetimes in TiO2, and photocurrents
and energy conversion efficiencies of plastic DSSCs between
different light intensities. 120
Fig. 3-23 The at-rest stability of plastic DSSCs based on SJW-E1 and
N719, respectively. 121
Fig. 3-24 The full sunlight soaking stability test of plastic DSSCs based on
SJW-E1 and N719, respectively, measured continuously under
100 mW/cm2 irradiation. 122
Fig. 4-1 The chemical structures of sensitizers used in this study. 126
Fig. 4-2 The cell performances of plastic DSSCs based on FL with
various thicknesses of low temperature fabricated TiO2 films: (a) JSC
and energy conversion efficiency, (b) IPCE active spectra. 130
Fig. 4-3 The absorbation of individual and co-dyes of N719, black dye
and FL. 131
Fig. 4-4 The J-V curves of plastic DSSCs based on co-sensitizers and
individual dyes. 133
Fig.4-5 (a) The IPCE active spectra of plastic DSSCs based on sequential
dipping, first in N719 solution for 10 min and then in FL solution
for different dipping times. (b) The IPCE active spectra of
plastic DSSCs based on sequential dipping, first in N719 solution
for different dipping times and then in FL solution for 10 min. 134
Fig.4-6 The IPCE active spectra of plastic DSSCs based on sequential
dipping, first in black dye solution for different dipping times and then in FL solution for 10 min. 136
Fig.4-7 (a) The absorption spectra of FL and Chl-e6 with and without CA
on ca. 2 mm TiO2 film. 138
Fig.4-8 EIS analysis of DSSCs based on various co-sensitization systems:
(a) N719 and FL, (b) black dye and FL, and (c) FL and Chl-e6
, respectively. 141
Fig. 5-1 (a) Transient photovoltage of DSSCs with different solvents
under identical condition. (b) The dependence of the JSC of the DSSC
on electron lifetime of the TiO2 electrode in different solvents. 153
Fig. 5-2 (a) and (b) shown the dependence of JSC of the DSSC on dielectric
constant and viscosity of different solvents, respectively; (c), (d), &
(f) shown the dependence of the donor number of different
solvents against the VOC, JSC & Rct2 of the DSSCs. (e) shown
the relationship between the donor number of solvents and
the electron lifetimes in TiO2 electrode in respective solvents. 154
Fig. 5-3 The absorption spectra based on DMSO, DMF and DMA, respectively
, indicating the dye desorption from the TiO2 photoelectrode. 155
Fig. 5-4 The Bode phase plots of the DSSCs based on AN, DMA, DMF
and DMSO solvents, respectively. 155
Fig. 5-5 Electron lifetimes in the TiO2 electrodes of the DSSCs with
different wt% of PVDF-HFP in electrolytes. 157
Fig. 5-6 Conductivities of electrolytes and the current densities of the
DSSCs based on various concentrations of (a) TBAI and (b)I2, respectively. 160
Fig. 5-7 Electron lifetimes and electron diffusion coefficients based on
various concentrations of I2. 161
Fig. 5-8 (a) Nyquist plots and (b) Bode phase plots based on different
concentrations of TBAI. 163
Fig. 5-9 (a) Nyquist plots and (b) Bode phase plots based on different
concentrations of I2. 164
Fig. 5-10 Plot of conductivity vs. temperature with various amounts of SiO2
nanoparticles. 166
Fig. 5-11 (a) Nyquist plots (including fitting curves) and (b) Bode phase
plots based on gel polymer electrolytes with various wt% SiO2. 168
Fig. 5-12 At-rest stability of the DSSCs based on GPE with/without SiO2. 170
Fig. 5-13 The variations of Rct2 and capacitance of the DSSCs storage at 70 oC
for several days. 170
Fig. 5-14 Bode phase plots of the DSSCs based on (a) PVDF-HFP and (b)
PVDF-HFP/1% nano-SiO2 electrolytes, respectively, for the
storage temperature at 70 oC. 172
Fig. 5-15 Electron lifetimes and electron diffusion coefficients of the DSSCs
based on (a) PVDF-HFP and (b) PVDF-HFP containing 1 wt%
SiO2 electrolytes for the storage temperature at 70 oC. 173
Fig. 5-16 (a) Cell performances of dye-sensitized solar cells (DSSCs) with
various concentrations of PAA in N3 dye solutions for co-adsorption
on TiO2 electrodes under illumination of 100 mW/cm2. The inset shows the UV-vis absorbance spectra of the N3 dye on TiO2 film
with various PAA concentrations. (b) The EIS analysis of DSSCs
with various concentrations of PAA in N3 dye solutions for
co-adsorbing on the TiO2 electrodes. 177
Fig. 5-17 SEM images of TiO2 electrodes with different morphologies prepared
by incorporating various amounts of mono-dispersed PMMA
particles (350 nm) in TiO2 pastes. The volume ratios of PMMA/TiO2
are: (a) 0.05, (b) 0.20, (c) 1.00, (d) 2.00, (e) 3.75, and (f) 5.00. 179
Fig. 5-18 (a) Cell performances of dye-sensitized solar cells (DSSCs) with
different morphologies of TiO2 electrodes. The inset shows the IPCEs
of the DSSCs. (b) Comparison of short-circuit current density (JSC)
and cell conversion efficiency (%) of DSSCs with different
TiO2 electrodes. (c) Relationship between Rct2 and different
TiO2 electrodes. The inset shows the corresponding EIS results. 180
Fig. 6-1 The polymerization of poly(3,4-alkylenedioxythiophene)s (PXDOTs).186
Fig. 6-2 The top view SEM images of various thin film materials: (a) Pt
(100 nm), (b) PEDOT (40 mC/cm2), (c) PProDOT (40 mC/cm2), and
(d) PProDOT-Et2 (40 mC/cm2). 188
Fig. 6-3 (a) CVs of iodide species on different electrodes and (b)
Consecutive 100 CVs of I-/I3
- for PProDOT-Et2 film at a scan rate
of 100 mV/s and (c) the relationship between cycle times and the
redox peak currents. 192
Fig. 6-4 (a) The CVs of iodide species on ProDOT-Et2 film with various scan rates in acetonitrile solution of 10 mM LiI, 1 mM I2 and 0.1 M
LiClO4. (b) Peak current as a function of scan rate in CV tests of
Fig. 7-3 (a). 194
Fig. 6-5 SEM images of PProDOT-Et2 films with various deposition
charge capacities (×10,000): (a) 10, (b) 20, (c) 40, (d) 80, (e) 120,
(f) 160, and (g) 200 mC/cm2. (h) Image of sputtered-Pt (100 nm)
for comparison. 195
Fig. 6-6 (a) The J-V curve of DSSCs based on PProDOT-Et2 counter
electrodes with different deposition charge capacities, and
summarized in (b) The VOC and FF of the DSSCs vs. the
deposition charge capacity and (c) the JSC and cell conversion
efficiency of DSSCs vs. the deposition charge capacity. 197
Fig. 6-7 EIS measurements of dye-sensitized solar cells (DSSCs). (a) The
series resistance of the device (RS) and the charge transfer resistance
at the counter electrode/electrolyte interface (Rct1) fitted from the
Nyquist plots. (b) Bode phase plot. 198
Fig. 6-8 EIS measurements of plastic DSSCs based on PProDOT-Et2 films. 200
Fig. 6-9 The IPCE spectra of plastic DSSCs with Pt and ProDOT-Et2 as
counter electrode, respectively. 201
Fig. 6-10 The at-rest stability plastic DSSCs with Pt and ProDOT-Et2 as
counter electrode, respectively. 201
Fig. A-1 Air mass definition. 240
Fig. A-2 The solar spectra at AM 0 and AM 1.5 plotted from the table in the literature 240
Fig. A-3 The geometry that defines the standard for the terrestrial solar
spectral irradiance at air mass 1.5 for a 37° tilted surface. 241
Fig. A-4 Conversion efficiency of solar cell materials versus band gap for
single junction cells 244
Fig. B-1 The absorption spectra of (a) BD adsorbed on a 5 mm TiO2 film and
(b) FL adsorbed on a 1 mm TiO2 film. 253
Fig. B-2 Plots of (a) the lifetime and (b) the diffusion coefficient of electron on
the TiO2 vs. concentrations of the DCA in both BD and FL. 257
Fig. B-3 The dark current observed from the I-V curve of the FL sensitized
DSSC containing DCA in the absence and presence of GuSCN. 259
Fig. C-1 (a) TEM image of well dispersed TiO2 nanoparticle and (b) SEM
image of nanoparticle TiO2 film. 267
Fig. C-2 The XRD pattern of the TiO2 nanoparticle after sintering at 500 oC. 268
Fig. C-3 The transparent spectra of nanoparticle TiO2 film with
different thicknesses. 268
Fig. C-4 The absorption spectra of FL dye1 in THF solution and on TiO2 film. 269
Fig. C-5 The relationship between the quantity of dye adsorption on the TiO2
film and cell conversion efficiencies against the soaking concentration
of the TiO2 film in dye solution at 25 oC. 271
Fig. C-6 (a) The change of normalized absorption maximum value and
the absorption maximum wavelength with the concentration of
dye solutions. (b) the relationship of photovoltaic parameters of the DSSCs with the concentration of dye solutions. 272
Fig. C-7 Cyclic voltammograms of FL dye1 anchored on 4 mm TiO2 film.
Scan rates (from inner to outer): 50, 100, 200, 300, 400 and 500 mV/s,
respectively. The inset shows the dependence of anodic peak currents
on scan rates. 273
Fig. C-8 TEM and SEM images of the TiO2 nanotube (TNT). 275
Fig. C-9 XRD pattern of the TiO2 nanotube (TNT) after sintering at
various temperatures. 275
Fig. C-10 The solar cell performances of FL based on nanoparticle TiO2
film incorporating various amount of TNT. 276
Fig. C-11 The effects of the TiO2 film thickness on short circuit current
density (JSC), open circuit voltage (VOC), fill factor (FF) and
cell conversion efficiency (h) of the DSSCs. 278
Fig. C-12 The average electron lifetimes of FL and N3 dye. 279
Fig. C-13 Action spectrum of IPCE of the DSSCs based on FL and N3 dye. 281
Fig. C-14 EIS analysis of the DSSCs under different light intensities. (a)
Nyquist plot and (b) Bode phase plot. 283
Fig. C-15 The at-rest stability of the DSSC with FL dye1 based on 4 mm TiO2
film for 50 days. 284
dc.language.isoen
dc.subject膠態電解質zh_TW
dc.subject暫態光電流/光電為分析zh_TW
dc.subject對電極zh_TW
dc.subject共敏化zh_TW
dc.subject有機染料zh_TW
dc.subject敏化劑zh_TW
dc.subject導電高分子zh_TW
dc.subject二氧化鈦電極zh_TW
dc.subject染料敏化太陽電池zh_TW
dc.subject交流阻抗分析zh_TW
dc.subjectDye-sensitized solar cellsen
dc.subject TiO2 electrodeen
dc.subjectSensitizeren
dc.subjectOrganic dyeen
dc.subjectCo-sensitizationen
dc.subjectGel polymer electrolyteen
dc.subjectCounter electrodeen
dc.subjectConducting polymeren
dc.subjectElectrochemical impedance spectroscopy (EIS)en
dc.subjectTransient photovoltage/photocurrent analysis.en
dc.title染料修飾二氧化鈦電極、膠態高分子電解質及無鉑對電極之染料敏化太陽電池研究zh_TW
dc.titleA Study on Dye-Modified TiO2 Electrode, Gel Polymer Electrolyte and Pt-Free Counter Electrode for Dye-Sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee林建村,吳春桂,周澤川,林金福,藍崇文
dc.subject.keyword染料敏化太陽電池,二氧化鈦電極,敏化劑,有機染料,共敏化,膠態電解質,對電極,導電高分子,交流阻抗分析,暫態光電流/光電為分析,zh_TW
dc.subject.keywordDye-sensitized solar cells, TiO2 electrode,Sensitizer,Organic dye,Co-sensitization,Gel polymer electrolyte,Counter electrode,Conducting polymer,Electrochemical impedance spectroscopy (EIS),Transient photovoltage/photocurrent analysis.,en
dc.relation.page295
dc.rights.note未授權
dc.date.accepted2008-11-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
18.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved