Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉仁沛
dc.contributor.authorJr-Rung Linen
dc.contributor.author林志榮zh_TW
dc.date.accessioned2021-06-08T07:04:58Z-
dc.date.copyright2009-01-06
dc.date.issued2008
dc.date.submitted2008-12-17
dc.identifier.citationBasford K.E., Greenway D.R., McLachlan G.J. and Peel D. (1997). Standard Errors of Fitted Component Means of Normal Mixtures, Computational Statistics. 12(1):1-17.
Best N. G., Cowles M. K. and Vines S. K. (1997). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.4. MRC Biostatistics Unit, Cambridge:http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
Carlin, B.P., and Louis, T.A. (1998). Bayes and Empirical Bayes for Data Analysis, Chapman and Hall, New York.
Casciano DA, Woodcock J. (2006). Empowering microarrays in the regulatory setting, Nature Biotechnology. 24: 1103.
Chow S.C. and Liu J.P. (2004). Design and Analysis of Clinical Trials 2nd Ed., John Wiley and Sons, 3rd Ed., New York, USA.
Dalton WS, Friend SH. (2006). Cancer Biomarkers–an invitation to the table, Science. 312: 1165-8.
Dempster AP, Laird NM, Rubin DB. (1997). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. B. 39: 1–38.
Efron B. and Tibshirani R.J. (1993). An Introduction to the Bootstrap, Chapman and Hall: New York.
Fleiss J.L., Levin B. and Paik M.C. (2003). Statistical Methods for Rates and Proportions, 3rd Ed. John Wiley and Sons, New York.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-6: 721-741.
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika. 57: 97-109.
Kathiresan, S., Melander, O., Anevski, D., et al. (2008). Polymorphism associated with cholesterol and risk of cardiovascular events, New England Journal of Medicine. 358: 1240-49.
Liu J.P. and Chow S.C. (2008). Issues on the diagnostic multivariate index assay and targeted clinical trials, Journal of Biopharmaceutical Statistics. 18: 167-182.
Maitournam A., Simon R. (2005). On the efficiency of targeted clinical trials. Statistics in Medicine. 24: 329-339.
McLachlan G.J. and Krishnan T. (1997). The EM algorithm and Extensions, Wiley, New York
McLachlan G.J. and Peel D. (2000). Finite Mixture Models, Wiley, New York.
Metropolis, N., Rosenbluth, A., Rosenbluth, R., Teller, A. and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087-1092
Miller, N.E., and Miller, G.J. (1975). High-density lipoprotein and atherosclerosis, Lancet. 1: 1033.
Namboodiri, K.K., Kaplan, B.B., Heuch, I, et al. (1985). The Collaborative Lipid Research Clinical Family Study: biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins, Genet. Epidemiol.. 2: 227-254.
Nissen, S.E., Tardif, J.C. Nicholls, S.J. for the ILLUSTRATE Investigators (2007). Effect of torcetrapib on the progress of coronary atherosclerosis, New England Journal of Medicine. 356: 1304-16.
Nityasuddhi D. and Böhning D. (2003). Asymptotic properties of the EM algorithm estimate for normal mixture models with component specific variances. Computational Statistics & Data Analysis. 41: 591-601.
Romond, E.H., Perez, E.A., Bryant, J. et al. (2005). Trastuzumab plus chemotherapy for operable HER2-positive breast cancer, New England Journal of Medicine. 353: 1673-84.
Simon R., Maitournam A. (2004). Evaluating the efficiency of targeted designs for randomized clinical trials. Clinical Cancer Research. 10: 6759- 6763.
Simon R. (2008). The use of genomics in clinical trial design. Clinical Cancer Research. 14: 5984-93.
Slamon, D.J., Leyland-Jones B., Shak, S., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2, New England Journal of Medicine. 344: 783-792.
The ALTTO trial. (2008). http://www.cancer.gov/, accessed on March 1, 2008.
U.S. FDA (1998). Decision Summary P980018. Rockville, Maryland, U.S.A.
U.S. FDA (2001). Decision Summary P980024/S001. Rockville, Maryland, U.S.A.
U.S. FDA (2004). Decision Summary P040030. Rockville, Maryland, U.S.A.
U.S. FDA (2005). The draft concept paper on Drug-Diagnostic Co-Development. The U.S. Food and Drug Administration, Rockville, Maryland, USA.
U.S. FDA (2006). Annotated Redlined Draft Package Insert for Herceptin. The U.S. Food and Drug Administration, Rockville, Maryland, U.S.A.
U.S. FDA (2007) Decision Summary k062694. Rockville, Maryland, U.S.A.
U.S. FDA (2007b). Draft Guidance on In Vitro Diagnostic Multivariate Index Assays. The U.S. Food and Drug Administration, Rockville, Maryland, USA.
Varmus H. (2006). The new era in cancer research, Science. 312: 1162-5.
Wu C. F. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics. 11: 95-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26280-
dc.description.abstract於人類基因體計畫完成後,疾病的分子標的可被鑑別,因此可以發展出分子標的形式的治療方法。在實務上,標的臨床試驗通常是用來評估個別化臨床處置的可能性及可行性。但是鑑定分子標的之診斷試劑通常並非完全準確,所以有些納入標的臨床試驗的陽性診斷病人實際上可能並沒有此分子標的,因此對於真正擁有分子標的之病人族群而言,標的臨床試驗下之標的療法的療效估計值會有偏差。 因此對於真正擁有分子標的之病人,我們則提出標的療法之無偏推論的統計方法。在強化設計的臨床試驗下,考慮鑑定分子標的之診斷試劑的準確度,我們提出利用EM演算法配合拔靴技術與貝氏方法來做處理效應之推論。運用模擬研究以驗證所得之估計值與檢定程序,並提出實例數據以說明方法的應用。對於推論真正擁有分子標的之病人族群的療效,我們所提出的之估計值及檢定程序為適當的統計方法。zh_TW
dc.description.abstractAfter completion of the Human Genome Project (HGP), the disease targets at molecular levels can be identified. As a result, treatment modality for molecular targets can be developed. In practice, targeted clinical trials are usually conducted for evaluation of the possibility and feasibility of the individualized treatment of patients. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Therefore, some of the patients enrolled in targeted clinical trials with a positive result for molecular target might not have the specific molecular targets and hence the treatment effects of the targeted therapy estimated from targeted clinical trials could be biased for the patient population truly with the molecular targets. We develop statistical methods for an unbiased inference for the targeted therapy in the patients truly with the molecular targets. Under the enrichment design, we propose using the EM algorithm in conjunction with the bootstrap technique and the Bayesian method to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. The simulation studies were conducted to empirically investigate the performance of the proposed estimations and testing procedures. Numerical example illustrates the application of the proposed method. Our proposed estimations and testing procedures are adequate statistical methods for the inference of the treatment effects for the patients truly with molecular targets.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:04:58Z (GMT). No. of bitstreams: 1
ntu-97-D92621203-1.pdf: 1758785 bytes, checksum: a13e1d51c9d832c7831837f89961b757 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsCHAPERT 1 INTRODUCTION 1
1.1 ACCURACY OF DIAGNOSTIC DEVICES 3
1.2 STATISTICAL DESIGNS 8
1.3 SUMMARY 13
CHAPERT 2 LITERATURE REVIEW 15
2.1 STATISTICAL METHODS UNDER ENRICHMENT DESIGN 16
2.2 EM ALGORITHM 17
2.3 CONVERGENCE OF EM ALGORITHM 18
2.4 ESTIMATOR OF THE STANDARD ERROR 19
2.5 MARKOV CHAIN MONTE CARLO (MCMC) 20
2.6 CONJUGATE PRIORS 22
2.7 GIBBS SAMPLER 25
CHAPERT 3 STATISTICAL INFERENCE TO CONTINUOUS ENDPOINTS 27
3.1 CURRENT METHODS 27
3.2 THE PROPOSED PROCEDURE 30
3.3 SAMPLE SIZE CALCULATION 37
CHAPERT 4 STATISTICAL INFERENCE TO BINARY ENDPOINTS 39
4.1 CURRENT METHODS 39
4.2 THE PROPOSED PROCEDURE 42
CHAPERT 5 SIMULATION STUDIES 47
5.1 CONTINUOUS ENDPOINTS 47
5.1.1 Simulation Procedure 47
5.1.2 Simulation Results 49
5.2 BINARY ENDPOINTS 53
5.2.1 Simulation Procedure 53
5.2.2 Simulation Results 54
CHAPERT 6 NUMERIC EXAMPLES 77
6.1 CONTINUOUS ENDPOINTS 77
6.2 BINARY ENDPOINTS 79
CHAPERT 7 DISCUSSION 85
REFERENCES 99
APPENDIX A 103
dc.language.isoen
dc.subject標的臨床試驗zh_TW
dc.subject貝氏估計zh_TW
dc.subject強化設計zh_TW
dc.subject拔靴法zh_TW
dc.subject陽性預測值zh_TW
dc.subjectEM演算法zh_TW
dc.subjectPositive predictive valueen
dc.subjectTargeted clinical trialsen
dc.subjectEnrichment designen
dc.subjectEM algorithmen
dc.subjectBootstrap methoden
dc.subjectBayesian approachen
dc.title強化設計標的臨床試驗下處理效應之統計推論zh_TW
dc.titleStatistical Inference on Treatment Effects for Targeted Clinical Trials under Enrichment Designen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee周賢忠,張啟仁,季瑋珠,廖振鐸,蕭金福
dc.subject.keyword標的臨床試驗,強化設計,EM演算法,拔靴法,貝氏估計,陽性預測值,zh_TW
dc.subject.keywordTargeted clinical trials,Enrichment design,EM algorithm,Bootstrap method,Bayesian approach,Positive predictive value,en
dc.relation.page121
dc.rights.note未授權
dc.date.accepted2008-12-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved