請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭明良 | |
dc.contributor.author | Pai-Sheng Chen | en |
dc.contributor.author | 陳百昇 | zh_TW |
dc.date.accessioned | 2021-06-08T07:03:57Z | - |
dc.date.copyright | 2009-02-10 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-01-20 | |
dc.identifier.citation | Adjei AA. (2005). The Role of Mitogen-Activated ERK-Kinase Inhibitors in Lung Cancer Therapy. Clin Lung Cancer. 7, 221-223.
Ambartsumian NS, Grigorian MS, Larsen IF, Karlstrom O, Sidenius N, Rygaard J, Georgiev G, Lukanidin E. (1996). Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogene. 13, 1621-1630. Ambartsumian, N., Klingelhofer, J., Grigorian, M., Christensen, C., Kriajevska, M., Tulchinsky, E., Georgiev, G., Berezin, V., Bock, E., Rygaard, J., Cao, R., Cao, Y., and Lukanidin, E. (2001). The metastasis-associated Mts1 (S100A4) protein could act as an angiogenic factor. Oncogene. 20, 4685–4695. Babic AM, Chen CC, Lau LF. (1999). Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 19, 2958-2966. Barrett-Lee PJ. (2005). Growth factor signalling in clinical breast cancer and its impact on response to conventional therapies: a review of chemotherapy. Endocr Relat Cancer. 12 Suppl 1, S125-133. Review. Berry MG, Gui GP, Wells CA, Carpenter R. (2004). Integrin expression and survival in human breast cancer. Eur J Surg Oncol. 30, 484-489. Bork P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 327, 125-130. Review. Branca M, Ciotti M, Santini D, Bonito LD, Benedetto A, Giorgi C, Paba P, Favalli C, Costa S, Agarossi A, Alderisio M, Syrjanen K, Group IS; HPV-Pathogen ISS Study Group. (2004). Activation of the ERK/MAP kinase pathway in cervical intraepithelial neoplasia is related to grade of the lesion but not to high-risk human papillomavirus, virus clearance, or prognosis in cervical cancer. Am J Clin Pathol. 122, 902-911. Brunet A, Pages G, Pouyssegur J. (1994). Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene. 9, 3379-3387 Brunton VG, MacPherson IR, Frame MC. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta. 1692, 121-44. Cho YG, Nam SW, Kim TY, Kim YS, Kim CJ, Park JY, Lee JH, Kim HS, Lee JW, Park CH, Song YH, Lee SH, Yoo NJ, Lee JY, Park WS. (2003). Overexpression of S100A4 is closely related to the aggressiveness of gastric cancer. APMIS. 111, 539-545. Cui JF, Liu YK, Pan BS, Song HY, Zhang Y, Sun RX, Chen J, Feng JT, Tang ZY, Yu YL, Shen HL, Yang PY. (2004). Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins. J Cancer Res Clin Oncol. 130, 615-622. Damjanovich L, Fulop B, Adany R, Nemes Z. (1997). Integrin expression on normal and neoplastic human breast epithelium. Acta Chir Hung. 36, 69-71. Das R, Mahabeleshwar GH, Kundu GC. (2004). Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem. 279, 11051-11064. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A. (2004). Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 18, 1240-1242.. Davies BR, Davies MP, Gibbs FE, Barraclough R, Rudland PS. (1993). Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. Oncogene. 8, 999-1008. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R. (1996). Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene. 13, 1631-1637. Deak, M., Clifton, A. D., Lucocq, J. M. and Alessi, D. R. (1998). Mitogenand stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426-4441 Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S. (2003). S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res. 18, 493-501. Ebralidze A, Tulchinsky E, Grigorian M, Afanasyeva A, Senin V, Revazova E, Lukanidin E. (1989) Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev. 3, 1086-1093. Felding-Habermann B, O'Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, Mueller BM. (2001). Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A. 98, 1853-1858. Ford HL, Salim MM, Chakravarty R, Aluiddin V, Zain SB. (1995). Expression of Mts1, a metastasis-associated gene, increases motility but not invasion of a nonmetastatic mouse mammary adenocarcinoma cell line. Oncogene. 11, 2067-2075. Frodin, M. and Gammeltoft, S. (1999). Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65-77. Fukunaga, R. and Hunter, T. (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921-1933. Gao R, Brigstock DR. (2004). Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem. 279, 8848-8855. Glading, A., Bodnar, R. J., Reynolds, I. J., Shiraha, H., Satish, L., Potter, D. A., Blair, H. C. and Wells, A. (2004). Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol. Cell. Biol. 24, 2499-2512. Glenney JR Jr, Kindy MS, Zokas L. (1989). Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol. 108, 569-578. Gollob JA, Wilhelm S, Carter C, Kelley SL. (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 33, 392-406. Review. Gui GP, Wells CA, Yeomans P, Jordan SE, Vinson GP, Carpenter R. (1996). Integrin expression in breast cancer cytology: a novel predictor of axillary metastasis. Eur J Surg Oncol. 22, 254-258. Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell. 100: 57-70. Hernan R, Fasheh R, Calabrese C, Frank AJ, Maclean KH, Allard D, Barraclough R, Gilbertson RJ. (2003). ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res. 63, 140-148. Hunger-Glaser, I., Salazar, E. P., Sinnett-Smith, J. and Rozengurt, E. (2003). Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J. Biol. Chem. 278, 22631-22643. Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. (1999). Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 274, 24321-24327. Jiang WG. (1996). E-cadherin and its associated protein catenins, cancer invasion and metastasis. Br J Surg. 83, 437-46. Review. Jones JI, Doerr ME, Clemmons DR. (1995). Cell migration: interactions among integrins, IGFs and IGFBPs. Prog Growth Factor Res. 6, 319-327. Review. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3, 537-549. Kim EJ, Helfman DM. (2003). Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem. 278: 30063-73. Kirfel G, Rigort A, Borm B, Herzog V. (2004). Cell migration: mechanisms of rear detachment and the formation of migration tracks. Eur J Cell Biol. 83, 717-724. Review. Klemke, R. L., Cai, S., Giannini, A. L., Gallagher, P. J., deLanerolle, P. and Cheresh, D. A. (1997). Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481-492. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M. (2002). Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis. 23, 769-776. Kriajevska MV, Cardenas MN, Grigorian MS, Ambartsumian NS, Georgiev GP, Lukanidin EM. (1994). Non-muscle myosin heavy chain as a possible target for protein encoded by metastasis-related mts-1 gene. J Biol Chem. 269, 19679-19682. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB. (2001). Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene. 20, 4209-4218. Lau LF,Lam SC. (1999). The CCN family of angiogenic regulators: The integrin connection. Exp Cell Res. 248, 44–57. Liapis H, Flath A, Kitazawa S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol. 5, 127-135. Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, Kuo ML. (2004). Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem. 279, 24015-24023. Liu, Z. X., Yu, C. F., Nickel, C., Thomas, S. and Cantley, L. G. (2002). Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J. Biol. Chem. 277, 10452-10458. Lloyd BH, Platt-Higgins A, Rudland PS, Barraclough R. (1998). Human S100A4 (p9Ka) induces the metastatic phenotype upon benign tumour cells. Oncogene. 17, 465-473. Mariani A, Sebo TJ, Katzmann JA, Riehle DL, Dowdy SC, Keeney GL, Lesnick TG, Podratz KC. (2005). HER-2/neu overexpression and hormone dependency in endometrial cancer: analysis of cohort and review of literature. Anticancer Res. 25, 2921-2927. Review. Masiakowski P, Shooter EM. (1988). Nerve growth factor induces the genes for two proteins related to a family of calcium-binding proteins in PC12 cells. Proc Natl Acad Sci U S A. 85, 1277-1281. Mazzucchelli L. (2002). Protein S100A4: too long overlooked by pathologists? Am J Pathol. 160, 7-13. Milde-Langosch K, Bamberger AM, Rieck G, Grund D, Hemminger G, Muller V, Loning T. (2005). Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer. 92, 2206-2215. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 115, 44-55. Miralem T, Steinberg R, Price D, Avraham H. (2001). VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene. 20, 5511-5524. Missiaglia E, Blaveri E, Terris B, Wang YH, Costello E, Neoptolemos JP, Crnogorac-Jurcevic T, Lemoine NR. (2004). Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int J Cancer. 112, 100-112. Nikitenko LL, Lloyd BH, Rudland PS, Fear S, Barraclough R. (2000). Localisation by in situ hybridisation of S100A4 (p9Ka) mRNA in primary human breast tumour specimens. Int J Cancer. 86, 219-228. Okada, H., Danoff, T. M., Kalluri, R., and Neilson, E. G. (1997). The early role of FSP1 in epithelial-mesenchymal transformation. Am. J. Physiol. 273: 563–574. Perbal B. (2004). CCN proteins: multifunctional signalling regulators. Lancet. 363, 62-64. Platt-Higgins AM, Renshaw CA, West CR, Winstanley JH, De Silva Rudland S, Barraclough R, Rudland PS. (2000). Comparison of the metastasis-inducing protein S100A4 (p9ka) with other prognostic markers in human breast cancer. Int J Cancer. 89, 198-208. Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW. (1999). Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism. Cancer Res. 59, 5475-5478. Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R. (2000). Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res. 60, 1595-1603. Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. (2002). The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol. 80, 239-56. Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK, Brugge JS. (2004). Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A. 101, 1257-1262. Schmidt-Hansen B, Klingelhofer J, Grum-Schwensen B, Christensen A, Andresen S, Kruse C, Hansen T, Ambartsumian N, Lukanidin E, Grigorian M. (2004). Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay. J Biol Chem. 279, 24498-244504. Schmidt-Hansen B, Ornas D, Grigorian M, Klingelhofer J, Tulchinsky E, Lukanidin E, Ambartsumian N. (2004). Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene. 23, 5487-5495. Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF, Lam SC. (2002). Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood. 99, 4457-4465. Sebolt-Leopold JS, Herrera R. (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 4, 937-47. Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK, Brugge JS. (2004). Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A. 101, 1257-1262. Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M. (1999). Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem (Tokyo). 126, 137-145. Taddei I, Faraldo MM, Teuliere J, Deugnier MA, Thiery JP, Glukhova MA. (2003). Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia. 8, 383-94. Takenaga K, Nakamura Y, Endo H, Sakiyama S. (1994). Involvement of S100-related calcium-binding protein pEL98 (or mts1) in cell motility and tumor cell invasion. Jpn J Cancer Res. 85, 831-839. Tangkeangsirisin W, Serrero G. (2004). PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis. 25, 1587-1592. Turner CE. (2000). Paxillin interactions. J Cell Sci. 23:4139-40. Van't Veer LJ, Weigelt B. (2003). Road map to metastasis. Nat Med. 9, 999-1000. Vivanco I, Sawyers CL. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2, 489-501. Wahab NA, Brinkman H, Mason RM. (2001). Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action. Biochem J. 359, 89-97. Waskiewicz, A. J., Flynn, A., Proud, C. G. and Cooper, J. A. (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909-1920. Watanabe Y, Usada N, Minami H, Morita T, Tsugane S, Ishikawa R, Kohama K, Tomida Y, Hidaka H. (1993). Calvasculin, as a factor affecting the microfilament assemblies in rat fibroblasts transfected by src gene. FEBS Lett. 324, 51-55. Weston BS, Wahab NA, Mason RM. (2003). CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. J Am Soc Nephrol. 14, 601-10. Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. (2001). Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 61, 8917-8923. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26245 | - |
dc.description.abstract | 癌細胞轉移以及抗藥性ㄧ直是癌症治療上急需突破之重要課題,已知結締組織生長因子在晚期乳癌患者組織中表現量較高,然其對於癌細胞功能之調控機制仍屬未知。本論文分為兩部份,第一部分(第一章)探討CTGF對於乳癌細胞移動暨轉移能力之影響,我們使用CTGF plasmid將其過度表現於MCF-7細胞株 (MCF-7/CTGF),發現細胞移動能力之明顯增加,同時細胞外型也產生顯著的紡錘型化改變;反之使用antisense CTGF抑制MDA231細胞株之CTGF表現後 (MDA231/AS),發現細胞之移動能力更為顯著下降,其外型也轉變為上皮型。以integrin alphavbeta3 中和抗體處理後可發現CTGF所造成的ERK1/2活化受到阻斷,可見CTGF是透過integrin alphavbeta3調控ERK1/2之訊息傳導路徑。此外,我們以cDNA microarray分析與轉移相關之分子,並發現其中與癌細胞轉移密切相關之S100A4基因其mRNA表現之顯著差異。以AS-S100A4抑制MCF-7/CTGF 細胞S100A4表現後,發現CTGF促進之細胞移動受到阻斷;而將S100A4過度表現在MDA231/AS 細胞則回復了因抑制CTGF所造成細胞能力之下降,同樣的結果也顯示在動物的乳癌轉移模式實驗中,可知S100A4對於CTGF促進癌細胞轉移之關鍵角色。我們也使用MEK1 plasmid以及ERK1/2抑制劑進一步證明CTGF是透過ERK1/2調控S100A4。最後,我們以real-time RT-PCR分析並發現臨床上,乳癌組織中CTGF與S100A4之mRNA表現量呈現高度相關。本部份證明了CTGF會透過integrin alphavbeta3/ERK1/2/S100A4之路徑調控乳癌細胞之轉移。此外,由於大部分的晚期癌症轉移通常伴隨著腫瘤抗藥性產生,我們在第二部份(第二章)的研究中也進一步探討CTGF對於癌細胞抗藥性的影響。我們以IHC分析並發現病患乳癌組織中CTGF蛋白之表現量與其化療之效果具有高度反相關。在細胞實驗中,以doxorubicin及paclitaxel處理,可發現CTGF過度表現(MCF-7/CTGF)顯著地增加癌細胞之clonogenic ability,存活能力,以及apoptosis之下降;反之,CTGF表現受到阻斷時(MDA231/AS)則導致相反之結果。我們進一步發現CTGF表現會正向調控Bcl-xL及cIAP1表現。在MCF-7/CTGF細胞中,以siRNA抑制Bcl-xL或cIAP1皆可阻斷CTGF促進抗藥性之效果;反之,利用plasmid轉殖表現因CTGF下降而受抑制之Bcl-xL或cIAP1則可回復其抗藥性之下降。處理integrin alphavbeta3中和抗體或ERK1/2抑制劑則阻斷CTGF調控之Bcl-xL及cIAP1高表現,顯示integrin alphavbeta3/ERK1/2 同樣對於CTGF於抗藥性之調控功能相當重要。以IHC分析發現臨床上CTGF與 Bcl-xL之蛋白表現量具有顯著正相關。本部份證明CTGF對於乳癌細胞之抗藥性之重要性,也找出其中調控Bcl-xL/cIAP1之機制。 | zh_TW |
dc.description.abstract | Connective tissue growth factor (CTGF) expression is elevated in advanced stages of breast cancer, but the regulatory role of CTGF in invasive breast cancer cell phenotypes is unclear. In the first part (Chapter 1), we found that over-expression of CTGF in MCF-7 cells (MCF-7/CTGF) enhanced cellular migratory ability and spindle-like morphological alterations, as evidenced by actin polymerization and focal adhesion complex aggregation. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) impaired cellular migration and promoted a change to an epithelial-like morphology. A neutralizing antibody to integrin alphavbeta3 significantly attenuated CTGF-mediated ERK1/2 activation and cellular migration, indicating that integrin alphavbeta3/ERK1/2 signaling pathway was critical in mediating CTGF function. Moreover, the cDNA microarray analysis revealed CTGF-mediated regulation of the critical prometastatic gene S100A4. Transfection of MCF-7/CTGF cells with AS-S100A4 reversed the CTGF-induced cellular migratory ability, while over-expression of S100A4 in MDA231/AS cells restored their high migratory ability. Genetic and pharmacological manipulations suggested that the CTGF–mediated S100A4 up-regulation was dependent on ERK1/2 activation, with expression levels of CTGF and S100A4 being closely correlated with human breast tumors. We conclude that CTGF plays a critical role in the migratory/invasive processes in human breast cancer by a mechanism involving the activation of the integrin alphavbeta3/ERK1/2/S100A4 pathway. In addition, since most metastatic disease only responds transiently to chemotherapy and most cancer patients die of metastatic disease. In the second part (Chapter 2), we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression inversely associated with chemotherapy response. Overexpression of CTGF in MCF-7 cells enhanced clonogenic ability, cell viability and resistance to apoptosis upon exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 cells decreased these effects. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cIAP1. Knockdown of Bcl-xL or cIAP1 with specific siRNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF-7/CTGF cells. Inhibition of ERK1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF-7/CTGF cells. A neutralizing antibody against integrin alphavbeta3 significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alphavbeta3/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We concluded that CTGF expression could confer resistance to chemotherapeutic agents through ERK1/2-mediated Bcl-xL/cIAP1 up-regulation of a survival pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:03:57Z (GMT). No. of bitstreams: 1 ntu-98-F92447001-1.pdf: 2247271 bytes, checksum: c97c4499da3770c7132cf1506a58e97c (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員審定書....1
致謝........2 Abstract in Chinese.....3 Abstract in English.....5 Chapter I. Connective Tissue Growth Factor Enhances the Motility of Breast Cancer Cells via an Integrin alphavbeta3/ERK1/2-dependent S100A4 Up-Regulated Pathway............8 1-1. Introduction.............9 1-2. Materials and Methods..........12 1-3. Results...............20 1-4. Discussion..............29 1-5. Acknowledgement...........34 1-6. References.............35 1-7. Figures and Figure Legends................48 CHAPTER II. Connective Tissue Growth Factor Confers Drug Resistance in Breast Cancer through Concomitant Up-regulation of Bcl-xL and cIAP1..................64 2-1. Introduction.............65 2-2. Materials and Methods.........66 2-3. Results.................70 2-4. Discussion...........77 2-5. Acknowledgement.............80 2-6. References..................81 2-7. Figures and Figure Legends................86 Chapter III. Conclusion and Future Application.............99 | |
dc.language.iso | en | |
dc.title | 結締組織生長因子於乳癌轉移及抗藥性之調控角色 | zh_TW |
dc.title | Roles of Connective Tissue Growth Factor in Breast Cancer Metastasis and Drug Resistance | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林明燦,洪文俊,王朝鐘,鄭安理 | |
dc.subject.keyword | 結締組織生長因子,乳癌,ERK1/2,Integrin,S100A4,轉移,F-actin,抗藥性,Bcl-xL,cIAP1, | zh_TW |
dc.subject.keyword | Connective tissue growth factor,Breast cancer,ERK1/2,Integrin,S100A4,invasion,F-actin,drug resistance,Bcl-xL,cIAP1, | en |
dc.relation.page | 101 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-01-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。