請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭?堅(Kenneth James Palmer) | |
| dc.contributor.author | Hsin-Yin Wang | en |
| dc.contributor.author | 王心吟 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:03:02Z | - |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-23 | |
| dc.identifier.citation | [1] Benninga, S. and Z. Wiener. “Binomial Term Structure Models.” Mathematica in Education and Research, Vol. 7, No. 3. (1998), 1-9.
[2] Black, F., E. Derman, and W. Toy. “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options.” Financial Analysts Journal, Vol. 46, Issue 1. (1990), 33-39. [3] Cairns, A. J. G. “Interest Rate Models: An Introduction.” Princeton University Press, 2004. [4] Chambers, D. R. and Q. Lu. “A Tree Model for Pricing Convertible Bonds with Equity, Interest Rate, and Default Risk.” The Journal of Derivatives, Vol. 14, Issue 4. (2007), 25-46. [5] Cox, J. C., S. A. Ross, and M. Rubinstein. “Option Pricing: A Simplified Approach.” Journal of Financial Economics, Vol. 7, Issue 3. (1979), 229-263. [6] Ho, T. and S. B. Lee. “Term Structure Movements and Pricing Interest Rate Contingent Claims.” Journal of Finance, Vol. 41, No.5. (1986), 1011-1029. [7] Hull, J. C. “Options, Futures, and Other Derivatives.” Prentice Hall, New Jersey, fifth Edition, 2003. [8] Hung, M. and J. Wang. “Pricing Convertible Bonds Subject to Default Risk.” The Journal of Derivatives, Vol. 10, Issue 2. ( 2002), 75-87. [9] Pliska, S. R. “Introduction to Mathematical Finance: Discrete Time Models.” Blackwell Publishers, 1997. [10] Svoboda, S. “Interest Rate Modelling.” Palgrave Macmillan, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26212 | - |
| dc.description.abstract | 本文探討利用股價、短期利率和違約風險三因子模型評價可轉換債券。其中,利用二項式 (CRR) 模型生成股價二元樹;使用Ho-Lee模型與Black-Derman-Toy (BDT)模型生成短期利率二元樹;違約風險使用Chambers-Lu模型與Hung-Wang模型分別推導各期間的風險中立違約機率通式,比較兩模型違約機率通式,可發現在到期日越長的無風險債券現值越小假設下,Chambers-Lu模型的違約機率大於Hung-Wang模型的違約機率。
利用股價、短期利率和違約風險生成六元樹找出風險中立機率,可知此模型不具有完備性,因此可轉換債券價格並非唯一的。可利用風險中立機率計算可轉換債券價格區間,並發現Hung和Wang文中所使用之機率並非風險中立機率。另外,比較和討論當分割期數趨近無限大時,可轉換債券價格區間收斂性。 | zh_TW |
| dc.description.abstract | This paper presents the valuation of convertible bonds by using stock price, short rate, and default risk. We used binomial (CRR) Model to construct binomial stock price tree; while short rate was transformed into two binomial trees by using Ho-Lee Model and Black-Derman-Toy (BDT) Model. Two different equations were obtained while analyzing default risk by Chambers-Lu Model and by Hung-Wang Model. By investigate these two equations, we demonstrated if the longer the duration, the smaller the price of default-free bonds. Then, default probabilities obtained by Chambers-Lu Model tend to be greater than the probabilities obtained by Hung-Wang Model.
After using stock price, short rate, and default risk to construct hexnomial tree and calculate risk-neutral probabilities, we concluded that the model is incomplete since these prices were not unique. Convertible bond price intervals were calculated using by risk-neutral probabilities. We observed that the probabilities used in the paper introduced by Hung and Wang were not risk-neutral probabilities. Moreover, we compared and discussed the convergence convertible bond price intervals as the number of periods→∞. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:03:02Z (GMT). No. of bitstreams: 1 ntu-98-R94221018-1.pdf: 6296429 bytes, checksum: 48f061acbca4746c644b195ea2be80f7 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1. 簡介 1
2. 利用二項式模型求股價 3 3. 利用HO-LEE 模型求短期利率 5 3.1. HO-LEE模型為無套利機會且具有完備性 6 3.2. HO-LEE短期利率模型 7 3.3. 範例 11 4. 利用BLACK-DERMAN-TOY(BDT)模型求短期利率 14 4.1. 短期利率必有唯一解 15 4.2. BDT 短期利率模型 16 4.3. 範例 18 5. 股價和短期利率雙因子模型 20 6. 評價可轉換債券之傳統模型 24 6.1. 傳統模型評價步驟 24 6.2. 範例 26 6.3. 增加分割期數 28 7. 利用CHAMBERS-LU 模型求違約風險 30 7.1. CHAMBERS-LU模型違約機率通式 30 7.2. 範例 33 8. 利用HUNG-WANG 模型求違約風險 35 8.1. HUNG-WANG 模型違約機率通式 35 8.2. 比較CHAMBERS-LU模型與HUNG-WANG 模型違約風險 41 8.3. 範例 44 9. 三因子模型 45 9.1. 風險中立機率 47 9.2. 計算或有要求權(CONTINGENT CLAIMS)的價格 51 9.3. 相關性(CORRELATION) 59 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | Chambers-Lu 模型 | zh_TW |
| dc.subject | 二項式模型 | zh_TW |
| dc.subject | Hung-Wang 模型 | zh_TW |
| dc.subject | 可轉換債券 | zh_TW |
| dc.subject | BDT 模型 | zh_TW |
| dc.subject | Ho-Lee 模型 | zh_TW |
| dc.subject | 違約風險 | zh_TW |
| dc.subject | Hung-Wang Model | en |
| dc.subject | Convertible Bond | en |
| dc.subject | Binomial (CRR) Model | en |
| dc.subject | Black-Derman-Toy (BDT) Model | en |
| dc.subject | Ho-Lee Model | en |
| dc.subject | Default Risk | en |
| dc.subject | Chambers-Lu Model | en |
| dc.title | 含違約風險之可轉換債券評價 | zh_TW |
| dc.title | Valuation of Convertible Bonds with Default Risk | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉淑鶯,姜祖恕 | |
| dc.subject.keyword | 可轉換債券,二項式模型,BDT 模型,Ho-Lee 模型,違約風險,Chambers-Lu 模型,Hung-Wang 模型, | zh_TW |
| dc.subject.keyword | Convertible Bond,Binomial (CRR) Model,Black-Derman-Toy (BDT) Model,Ho-Lee Model,Default Risk,Chambers-Lu Model,Hung-Wang Model, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-01-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
