Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭?堅(Kenneth James Palmer)
dc.contributor.authorHsin-Yin Wangen
dc.contributor.author王心吟zh_TW
dc.date.accessioned2021-06-08T07:03:02Z-
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-23
dc.identifier.citation[1] Benninga, S. and Z. Wiener. “Binomial Term Structure Models.” Mathematica in Education and Research, Vol. 7, No. 3. (1998), 1-9.
[2] Black, F., E. Derman, and W. Toy. “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options.” Financial Analysts Journal, Vol. 46, Issue 1. (1990), 33-39.
[3] Cairns, A. J. G. “Interest Rate Models: An Introduction.” Princeton University Press, 2004.
[4] Chambers, D. R. and Q. Lu. “A Tree Model for Pricing Convertible Bonds with Equity, Interest Rate, and Default Risk.” The Journal of Derivatives, Vol. 14, Issue 4. (2007), 25-46.
[5] Cox, J. C., S. A. Ross, and M. Rubinstein. “Option Pricing: A Simplified Approach.” Journal of Financial Economics, Vol. 7, Issue 3. (1979), 229-263.
[6] Ho, T. and S. B. Lee. “Term Structure Movements and Pricing Interest Rate Contingent Claims.” Journal of Finance, Vol. 41, No.5. (1986), 1011-1029.
[7] Hull, J. C. “Options, Futures, and Other Derivatives.” Prentice Hall, New Jersey, fifth Edition, 2003.
[8] Hung, M. and J. Wang. “Pricing Convertible Bonds Subject to Default Risk.” The Journal of Derivatives, Vol. 10, Issue 2. ( 2002), 75-87.
[9] Pliska, S. R. “Introduction to Mathematical Finance: Discrete Time Models.” Blackwell Publishers, 1997.
[10] Svoboda, S. “Interest Rate Modelling.” Palgrave Macmillan, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26212-
dc.description.abstract本文探討利用股價、短期利率和違約風險三因子模型評價可轉換債券。其中,利用二項式 (CRR) 模型生成股價二元樹;使用Ho-Lee模型與Black-Derman-Toy (BDT)模型生成短期利率二元樹;違約風險使用Chambers-Lu模型與Hung-Wang模型分別推導各期間的風險中立違約機率通式,比較兩模型違約機率通式,可發現在到期日越長的無風險債券現值越小假設下,Chambers-Lu模型的違約機率大於Hung-Wang模型的違約機率。
利用股價、短期利率和違約風險生成六元樹找出風險中立機率,可知此模型不具有完備性,因此可轉換債券價格並非唯一的。可利用風險中立機率計算可轉換債券價格區間,並發現Hung和Wang文中所使用之機率並非風險中立機率。另外,比較和討論當分割期數趨近無限大時,可轉換債券價格區間收斂性。
zh_TW
dc.description.abstractThis paper presents the valuation of convertible bonds by using stock price, short rate, and default risk. We used binomial (CRR) Model to construct binomial stock price tree; while short rate was transformed into two binomial trees by using Ho-Lee Model and Black-Derman-Toy (BDT) Model. Two different equations were obtained while analyzing default risk by Chambers-Lu Model and by Hung-Wang Model. By investigate these two equations, we demonstrated if the longer the duration, the smaller the price of default-free bonds. Then, default probabilities obtained by Chambers-Lu Model tend to be greater than the probabilities obtained by Hung-Wang Model.
After using stock price, short rate, and default risk to construct hexnomial tree and calculate risk-neutral probabilities, we concluded that the model is incomplete since these prices were not unique. Convertible bond price intervals were calculated using by risk-neutral probabilities. We observed that the probabilities used in the paper introduced by Hung and Wang were not risk-neutral probabilities. Moreover, we compared and discussed the convergence convertible bond price intervals as the number of periods→∞.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:03:02Z (GMT). No. of bitstreams: 1
ntu-98-R94221018-1.pdf: 6296429 bytes, checksum: 48f061acbca4746c644b195ea2be80f7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1. 簡介 1
2. 利用二項式模型求股價 3
3. 利用HO-LEE 模型求短期利率 5
3.1. HO-LEE模型為無套利機會且具有完備性 6
3.2. HO-LEE短期利率模型 7
3.3. 範例 11
4. 利用BLACK-DERMAN-TOY(BDT)模型求短期利率 14
4.1. 短期利率必有唯一解 15
4.2. BDT 短期利率模型 16
4.3. 範例 18
5. 股價和短期利率雙因子模型 20
6. 評價可轉換債券之傳統模型 24
6.1. 傳統模型評價步驟 24
6.2. 範例 26
6.3. 增加分割期數 28
7. 利用CHAMBERS-LU 模型求違約風險 30
7.1. CHAMBERS-LU模型違約機率通式 30
7.2. 範例 33
8. 利用HUNG-WANG 模型求違約風險 35
8.1. HUNG-WANG 模型違約機率通式 35
8.2. 比較CHAMBERS-LU模型與HUNG-WANG 模型違約風險 41
8.3. 範例 44
9. 三因子模型 45
9.1. 風險中立機率 47
9.2. 計算或有要求權(CONTINGENT CLAIMS)的價格 51
9.3. 相關性(CORRELATION) 59
參考文獻 68
dc.language.isozh-TW
dc.subjectChambers-Lu 模型zh_TW
dc.subject二項式模型zh_TW
dc.subjectHung-Wang 模型zh_TW
dc.subject可轉換債券zh_TW
dc.subjectBDT 模型zh_TW
dc.subjectHo-Lee 模型zh_TW
dc.subject違約風險zh_TW
dc.subjectHung-Wang Modelen
dc.subjectConvertible Bonden
dc.subjectBinomial (CRR) Modelen
dc.subjectBlack-Derman-Toy (BDT) Modelen
dc.subjectHo-Lee Modelen
dc.subjectDefault Risken
dc.subjectChambers-Lu Modelen
dc.title含違約風險之可轉換債券評價zh_TW
dc.titleValuation of Convertible Bonds with Default Risken
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉淑鶯,姜祖恕
dc.subject.keyword可轉換債券,二項式模型,BDT 模型,Ho-Lee 模型,違約風險,Chambers-Lu 模型,Hung-Wang 模型,zh_TW
dc.subject.keywordConvertible Bond,Binomial (CRR) Model,Black-Derman-Toy (BDT) Model,Ho-Lee Model,Default Risk,Chambers-Lu Model,Hung-Wang Model,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2009-01-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved