請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳兆勛 | |
| dc.contributor.author | Kai-Limg Chen | en |
| dc.contributor.author | 陳愷伶 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:02:51Z | - |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-23 | |
| dc.identifier.citation | 1 Gratzel, Michael, Photoelectrochemical cells. Nature 414 (6861), 338 (2001).
2 Markvart, T., Solar Electricity, 2nd ed. (John Wiley & Sons, 2000). 3 Green, Martin A., Photovoltaic principles. Physica E: Low-dimensional Systems and Nanostructures 14 (1-2), 11 (2002). 4 D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 25, 676 (1954). 5 Reynolds, D. C., Leies, G., Antes, L. L., and Marburger, R. E., Photovoltaic Effect in Cadmium Sulfide. Physical Review 96 (2), 533 (1954). 6 Jenny, D. A., Loferski, J. J., and Rappaport, P., Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion. Physical Review 101 (3), 1208 (1956). 7 Stoger, M. et al., Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD. Physica B: Condensed Matter 273-274, 540 (1999). 8 Fujishima, Akira and Honda, Kenichi, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (5358), 37 (1972). 9 Amadelli, R., Argazzi, R., Bignozzi, C. A., and Scandola, F., Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22. Journal of the American Chemical Society 112 (20), 7099 (1990). 10 O'Regan, Brian and Gratzel, Michael, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (6346), 737 (1991). 11 Spanggaard, Holger and Krebs, Frederik C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells 83 (2-3), 125 (2004). 12 J. Xue, B. Rand S. Uchida S. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell. Advanced Materials 17 (1), 66 (2005). 13 Nazeeruddin, M. K., Efficient panchromatic sensitization of nanocrystalline TiO 2 films by a black dye based on a trithiocyanato Ruthenium complex. Chemical Communications (18), 1705 (1997). 14 Fang, Jinghuai et al., The photovoltaic study of co-sensitized microporous TiO2 electrode with porphyrin and phthalocyanine molecules. Applied Surface Science 119 (3-4), 237 (1997). 15 Clifford, J. N. et al., Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films. J. Am. Chem. Soc. 126 (18), 5670 (2004). 16 Kuang, D. et al., Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir 23 (22), 10906 (2007). 17 Nazeeruddin, Md K. et al., Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem. 38 (26), 6298 (1999). 18 Rawling, Tristan and McDonagh, Andrew, Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coordination Chemistry Reviews 251 (9-10), 1128 (2007). 19 Xiao, H., 半導體程技術概論, 2nd ed. (學銘圖書有限公司, 2002). 20 Madhusudan Reddy, K., Manorama, Sunkara V., and Ramachandra Reddy, A., Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics 78 (1), 239 (2003); Nagaveni, K. et al., Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir 20 (7), 2900 (2004). 21 Polo, Andr Sarto, Itokazu, Melina Kayoko, and Murakami Iha, Neyde Yukie, Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews 248 (13-14), 1343 (2004). 22 Bignozzi, C. A., Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews 29 (2), 87 (2000). 1 Gratzel, Michael, Photoelectrochemical cells. Nature 414 (6861), 338 (2001). 2 Markvart, T., Solar Electricity, 2nd ed. (John Wiley & Sons, 2000). 3 Green, Martin A., Photovoltaic principles. Physica E: Low-dimensional Systems and Nanostructures 14 (1-2), 11 (2002). 4 D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 25, 676 (1954). 5 Reynolds, D. C., Leies, G., Antes, L. L., and Marburger, R. E., Photovoltaic Effect in Cadmium Sulfide. Physical Review 96 (2), 533 (1954). 6 Jenny, D. A., Loferski, J. J., and Rappaport, P., Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion. Physical Review 101 (3), 1208 (1956). 7 Stoger, M. et al., Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD. Physica B: Condensed Matter 273-274, 540 (1999). 8 Fujishima, Akira and Honda, Kenichi, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (5358), 37 (1972). 9 Amadelli, R., Argazzi, R., Bignozzi, C. A., and Scandola, F., Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22. Journal of the American Chemical Society 112 (20), 7099 (1990). 10 O'Regan, Brian and Gratzel, Michael, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (6346), 737 (1991). 11 Spanggaard, Holger and Krebs, Frederik C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells 83 (2-3), 125 (2004). 12 J. Xue, B. Rand S. Uchida S. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell. Advanced Materials 17 (1), 66 (2005). 13 Nazeeruddin, M. K., Efficient panchromatic sensitization of nanocrystalline TiO 2 films by a black dye based on a trithiocyanato Ruthenium complex. Chemical Communications (18), 1705 (1997). 14 Fang, Jinghuai et al., The photovoltaic study of co-sensitized microporous TiO2 electrode with porphyrin and phthalocyanine molecules. Applied Surface Science 119 (3-4), 237 (1997). 15 Clifford, J. N. et al., Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films. J. Am. Chem. Soc. 126 (18), 5670 (2004). 16 Kuang, D. et al., Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir 23 (22), 10906 (2007). 17 Nazeeruddin, Md K. et al., Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem. 38 (26), 6298 (1999). 18 Rawling, Tristan and McDonagh, Andrew, Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coordination Chemistry Reviews 251 (9-10), 1128 (2007). 19 Xiao, H., 半導體程技術概論, 2nd ed. (學銘圖書有限公司, 2002). 20 Madhusudan Reddy, K., Manorama, Sunkara V., and Ramachandra Reddy, A., Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics 78 (1), 239 (2003); Nagaveni, K. et al., Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir 20 (7), 2900 (2004). 21 Polo, Andr Sarto, Itokazu, Melina Kayoko, and Murakami Iha, Neyde Yukie, Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews 248 (13-14), 1343 (2004). 22 Bignozzi, C. A., Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews 29 (2), 87 (2000). 23 P. Wang, S. Zakeeruddin J. Moser R. Humphry-Baker P. Comte V. Aranyos A. Hagfeldt M. Nazeeruddin M. Gratzel, Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells. Advanced Materials 16 (20), 1806 (2004). 24 Neil, Robertson, Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition 45 (15), 2338 (2006). 25 Bauer, C., Interfacial Electron-Transfer Dynamics in Ru (tcterpy)(NCS)~ 3-Sensitized TiO~ 2 Nanocrystalline Solar Cells. Journal of Physical Chemistry, The 106 (49), 12693 (2002). 26 Nazeeruddin, Md K., Humphry-Baker, R., Liska, P., and Gratzel, M., Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. The Journal of Physical Chemistry B 107 (34), 8981 (2003). 27 Zakeeruddin, S. M. et al., Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2 Films. Langmuir 18 (3), 952 (2002); Wang, Peng et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2 (6), 402 (2003). 28 Kay, Andreas and Gratzel, Michael, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 44 (1), 99 (1996). 29 Mclntyre, B. George and P., Analytical Chemistry by Open Learning. (John Wiley and Sons,). 30 The Praying MantisTM User’s Manual. (HARRIC Scientific Corporation, 2002). 31 Hsu, Y. C., National Taiwan University, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26205 | - |
| dc.description.abstract | 本研究的主要目的是探討染料共敏化現象在染料敏化太陽能電池中的影響。
以DSSC而言,光電轉換效率取決於染料可吸收的光波長範圍以及電子轉移速率。一般DSSC使用的染料主要光吸收範圍約在400nm-600nm,在紅光區的吸收表現便已呈疲態。因此本研究欲利用混摻染料以達到延伸吸收光波長範圍,進而提昇DSSC的效率。 實驗上選用了常見的聯吡啶釕錯合物染料N3(cis-di(thiocyanato)-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2)以及主要吸收波段為紅光區的酞花青染料(bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2)混摻製作共敏化DSSC。合成N3與PcRu(dcpy)2兩種染料並在其中加一層Al2O3薄膜以期增加染料吸附量,兼顧延伸吸收光波段與染料吸附量。 然而由實驗結果可以發現PcRu(dcpy)2與N3的能階並不合適,前者的EHOMO過高使得電洞的傳遞受到阻礙而無法形成迴路。 | zh_TW |
| dc.description.abstract | The main purpose of this research is to study co-sensitization in the dye-sensitized solar cell (DSSC) .
As DSSC, photon-to-electron conversion efficiency is depend on the range of wavelength dye absorbs and the rate of electron shift from dye to electrode. The dye used in DSSC generally absorb light with 400nm-600nm in wavelength for the most of part while light-absorption is weak beyond 600nm. In this study, therefore, blending dyes is for extending the range of light absorption and improving the efficiency of DSSC further. The common ruthenuim complex, N3 (cis-di(thiocyanato)-bis(2,2'-bipyridyl -4,4'-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2), and phthalcyano ruthenium complex, bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2, which mainly absorb red radiation zone are chosen to fabricate co-sensitized DSSC. In order to taking both extension of light absorption and increasing adsporption of dyes, a layer of Al2O3 thin-film is inseted into synthsyized N3 and PcRu(dcpy)2. However, the results reveal that the energy band of PcRu(dcpy)2與N3 can not macth. EHOMO of the former is too high to obstruct the shifting of holes so that the circurt is cutted. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:02:51Z (GMT). No. of bitstreams: 1 ntu-98-R94549012-1.pdf: 4354683 bytes, checksum: 8d068710fffa16252c84ba71d92a66c7 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VI 第1章 緒論 1 1-1 前言 1 1-2 太陽能電池 2 1-2-1 光伏打太陽能電池 2 1-2-2 光化學太陽能電池 4 1-2-3 染料敏化太陽能電池 5 1-2-4 有機太陽能電池 6 1-3 研究動機與目的 7 第2章 實驗原理與文獻回顧 9 2-1 半導體簡介 9 2-1-1 能帶結構與費米能階 9 2-1-3 二氧化鈦 11 2-2 光敏化染料 12 2-2-1 染料工作原理 12 2-2-2 釕錯合物 14 2-3 電解質 16 2-4 反電極 17 2-5 染料敏化太陽能電池工作原理 18 2-6 染料敏化太陽能電池的光電轉換效應 20 第3章 實驗設備與方法 22 3-1 實驗藥品與材料 22 3-2 實驗設備 23 3-3 實驗流程 24 3-3-1 實驗物品的預處理 24 3-3-2 聯吡啶釕錯合物染料(N3)之製備 24 3-3-3 酞花青釕錯合物染料(PcRu(dcpy)2)之製備 26 3-3-4 白金反電極之製備 28 3-3-5 二氧化鈦/染料薄膜電極製備 28 3-3-6 電解液之製備 29 3-3-7 染料敏化太陽能電池組裝 30 3-4 染料性質分析與測試 30 3-4-1 紫外光/可見光吸收光譜儀 (UV/Vis Spectrometer) 30 3-4-2 循環伏安儀 (Cyclic Voltammetry) 31 3-5 二氧化鈦薄膜性質分析與測試 31 3-5-1 傅立葉轉紅外線光譜儀 (FT-IR) 31 3-6 染料敏化太陽能電池效率測試 33 3-6-1 光電轉換效率量測系統 33 第4章 實驗結果與討論 34 4-1 染料性質討論 34 4-1-1染料吸收光譜(UV-vis spectrum) 34 4-1-2 循環伏安圖(Cyclic Voltammogram) 35 4-2 二氧化鈦薄膜性質討論 37 4-2-1 吸收光譜(UV-vis spectrum) 37 4-2-2循環伏安圖(Cyclic Voltammogram) 38 4-2-3 傅立葉轉換紅外光吸收光譜圖(FT-IR) 39 4-3 染料敏化太陽能電池效率 40 4-3-1 I-V曲線圖 40 第5章 結論與建議 42 5-1 結論 42 5-2 建議 43 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 染料混摻 | zh_TW |
| dc.subject | 共敏化 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | co-sensitized | en |
| dc.subject | blending dye | en |
| dc.subject | dye-sensitized solar cell | en |
| dc.title | 酞花青與聯吡啶釕錯合物染料共敏化現象之於染料敏化太陽能電池的應用與探討 | zh_TW |
| dc.title | Study and Application of Co-sensitization by Phthalocyanato and Bipyridyl Ruthenium Dye for Dye-Sensitized Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英,謝國煌 | |
| dc.subject.keyword | 染料敏化太陽能電池,共敏化,染料混摻, | zh_TW |
| dc.subject.keyword | dye-sensitized solar cell,co-sensitized,blending dye, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-01-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
