Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2615
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹(Gen-Shuh Wang)
dc.contributor.authorYu-Man Shangen
dc.contributor.author商育滿zh_TW
dc.date.accessioned2021-05-13T06:43:11Z-
dc.date.available2018-02-24
dc.date.available2021-05-13T06:43:11Z-
dc.date.copyright2017-02-24
dc.date.issued2017
dc.date.submitted2017-02-09
dc.identifier.citation1. Mitchell TV, Maslin MT. How vision matters for individuals with hearing loss. Int J Audiol 2007, 46(9): 500-511.
2. Youssef PN, Sheibani N, Albert DM. Retinal light toxicity. Eye 2011, 25(1): 1-14.
3. Mattsson M-O, Jung T, Proykova A. Health effects of artificial light: Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR); 2012.
4. Behar-Cohen F, Martinsons C, Vienot F, Zissis G, Barlier-Salsi A, Cesarini JP, et al. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 2011, 30(4): 239-257.
5. Boyce PR. Human Factors in Lighting, 3nd edn. CRC press: New York, 2014, pp 458-488.
6. Mills E, Borg N. Trends in Recommended Lighting Levels: An International Comparison. Journal of the Illuminating Engineering Society of North Ameria 1999, 28(1): 155-163.
7. Held G. Introduction to Light Emitting Diode Technology and Applications, 1st edn. Auerbach Publications: New York, 2008, pp 79-102.
8. DiLaura D, Houser K, Mistrick R, Steffy G. IES Lighting Handbook, 10th edn. Illuminating Engineering Society: New York, 2011.
9. Vienot F. Quality of white light from LEDs. In: Mottier P, editor. LEDs for lighting applications. Hoboken, NJ: Wiley; 2010. p. 208.
10. Navigant Consulting I. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications. Washington, D.C.: U.S. Department of Energy; 2014.
11. Kim JK, Schubert EF. Transcending the replacement paradigm of solid-state lighting. Opt Express 2008, 16(26): 21835-21842.
12. Schubert EF, Kim JK, Luo H, Xi JQ. Solid-state lighting—a benevolent technology. Reports on Progress in Physics 2006, 69(12): 3069-3099.
13. Sliney DH. How light reaches the eye and its components. Int J Toxicol 2002, 21(6): 501-509.
14. Zrenner E. The role of electrophysiology and psychophysics in ocular toxicology. In: Fraunfelder TF, Fraunfelder WF, Chambers AW (eds). Clinical Ocular Toxicology. Elsevier: Portland OR, 2008, pp 21-38.
15. Pepe IM. Rhodopsin and phototransduction. J Photochem Photobiol B 1999, 48(1): 1-10.
16. Bok D. Processing and transport of retinoids by the retinal pigment epithelium. Eye 1990, 4 ( Pt 2): 326-332.
17. Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol B 2001, 64(2-3): 144-161.
18. Boulton ME, Mitter SK, Rao HV, Dunn WA. Cell Death, Apoptosis, and Autophagy in Retinal Injury. In: Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda S, Wiedemann P (eds). Retina, 5th edn, vol. 1. Elsevier: London, 2013, pp 537-552.
19. Sliney DH. Photoprotection of the eye - UV radiation and sunglasses. J Photochem Photobiol B 2001, 64(2-3): 166-175.
20. Sliney HD. Optical radiation hazard analysis; 2006.
21. Organisciak D, Zarbin M. Retinal photic injury. In: Levin LA, Albert DM (eds). Ocular Disease Mechanisms and Management. Elsevier London, 2010, pp 499-505.
22. Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol 1966, 5(5): 450-473.
23. Glickman RD. Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 2002, 21(6): 473-490.
24. Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol 2006, 51(5): 461-481.
25. Lu L, Oveson BC, Jo YJ, Lauer TW, Usui S, Komeima K, et al. Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxidants & Redox Signaling 2009, 11(4): 715-724.
26. Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H, et al. Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 2006, 208(3): 516-526.
27. Kremers JJ, van Norren D. Retinal damage in macaque after white light exposures lasting ten minutes to twelve hours. Invest Ophthalmol Vis Sci 1989, 30(6): 1032-1040.
28. Kuwabara T, Gorn RA. Retinal damage by visible light. An electron microscopic study. Arch Ophthalmol 1968, 79(1): 69-78.
29. Mandal NA, Anderson RE, Ash JD. Injury and Repair: Light Damage. vol. 392-399. Elsevier, 2010.
30. Ham WT, Jr., Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976, 260(5547): 153-155.
31. Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012, 31(1): 28-42.
32. Peng ML, Tsai CY, Chien CL, Hsiao JCJ, Huang SY, Lee CJ. The Influence of Low-powered Family LED Lighting on Eyes in Mice Experimental Model. Life Sci J 2012, 9(1): 477.
33. Spivey A. The mixed blessing of phosphor-based white LED. Environ Health Perspect 2011, 119(11): A472-473.
34. Holzman DC. What's in a color? The unique human health effect of blue light. Environ Health Perspect 2010, 118(1): A22-27.
35. U.S. Department of Energy. Lifetime of white LED. In: Energy Do, editor. Washington D.C.; 2009.
36. Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. Journal of photochemistry and photobiology B, Biology 2001, 64(2-3): 144-161.
37. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000, 45(2): 115-134.
38. van Norren D, Gorgels TG. The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data. Photochem Photobiol 2011, 87(4): 747-753.
39. Bennet D, Kim MG, Kim S. Light-induced anatomical alterations in retinal cells. Anal Biochem 2013, 436(2): 84-92.
40. Knels L, Valtink M, Roehlecke C, Lupp A, de la Vega J, Mehner M, et al. Blue light stress in retinal neuronal (R28) cells is dependent on wavelength range and irradiance. Eur J Neurosci 2011, 34(4): 548-558.
41. Ueda T, Nakanishi-Ueda T, Yasuhara H, Koide R, Dawson WW. Eye damage control by reduced blue illumination. Exp Eye Res 2009, 89(6): 863-868.
42. Osborne NN, Li GY, Ji D, Mortiboys HJ, Jackson S. Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem 2008, 105(5): 2013-2028.
43. Seko Y, Pang J, Tokoro T, Ichinose S, Mochizuki M. Blue light-induced apoptosis in cultured retinal pigment epithelium cells of the rat. Graefes Arch Clin Exp Ophthalmol 2001, 239(1): 47-52.
44. Pang J, Seko Y, Tokoro T, Ichinose S, Yamamoto H. Observation of ultrastructural changes in cultured retinal pigment epithelium following exposure to blue light. Graefes Arch Clin Exp Ophthalmol 1998, 236(9): 696-701.
45. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 2014, 4: 5223.
46. Ogawa K, Kuse Y, Tsuruma K, Kobayashi S, Shimazawa M, Hara H. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC Complement Altern Med 2014, 14: 120.
47. Jaadane I, Boulenguez P, Chahory S, Carre S, Savoldelli M, Jonet L, et al. Retinal damage induced by commercial light emitting Diodes (LED). Free Radic Biol Med 2015, 84: 373–384.
48. Geiger P, Barben M, Grimm C, Samardzija M. Blue light-induced retinal lesions, intraretinal vascular leakage and edema formation in the all-cone mouse retina. Cell Death Dis 2015, 6: e1985.
49. Narimatsu T, Negishi K, Miyake S, Hirasawa M, Osada H, Kurihara T, et al. Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo. Exp Eye Res 2015, 132: 48-51.
50. Yu ZL, Qiu S, Chen XC, Dai ZH, Huang YC, Li YN, et al. Neuroglobin - A potential biological marker of retinal damage induced by LED light. Neuroscience 2014, 270: 158-167.
51. Kim GH, Kim HI, Paik SS, Jung SW, Kang S, Kim IB. Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice. Graefes Arch Clin Exp Ophthalmol 2016, 254(4): 705-716.
52. Wu J, Chen E, Soderberg PG. Failure of ascorbate to protect against broadband blue light-induced retinal damage in rat. Graefes Arch Clin Exp Ophthalmol 1999, 237(10): 855-860.
53. Roehlecke C, Schaller A, Knels L, Funk RH. The influence of sublethal blue light exposure on human RPE cells. Mol Vis 2009, 15: 1929-1938.
54. Chamorro E, Bonnin-Arias C, Perez-Carrasco MJ, Munoz de Luna J, Vazquez D, Sanchez-Ramos C. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro. Photochem Photobiol 2013, 89(2): 468-473.
55. King A, Gottlieb E, Brooks DG, Murphy MP, Dunaief JL. Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. Photochem Photobiol 2004, 79(5): 470-475.
56. Lascaratos G, Ji D, Wood JP, Osborne NN. Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures. Vision Res 2007, 47(9): 1191-1201.
57. Bravo-Nuevo A, Williams N, Geller S, Stone J. Mitochondrial deletions in normal and degenerating rat retina. Adv Exp Med Biol 2003, 533: 241-248.
58. Huang H, Li F, Alvarez RA, Ash JD, Anderson RE. Downregulation of ATP synthase subunit-6, cytochrome c oxidase-III, and NADH dehydrogenase-3 by bright cyclic light in the rat retina. Invest Ophthalmol Vis Sci 2004, 45(8): 2489-2496.
59. Donovan M, Cotter TG. Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ 2002, 9(11): 1220-1231.
60. Wenzel A, Grimm C, Samardzija M, Reme CE. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 2005, 24(2): 275-306.
61. Dunaief JL. Iron induced oxidative damage as a potential factor in age-related macular degeneration: the Cogan Lecture. Invest Ophthalmol Vis Sci 2006, 47(11): 4660-4664.
62. Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013, 58(6): 585-609.
63. Hadziahmetovic M, Kumar U, Song Y, Grieco S, Song D, Li Y, et al. Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE. Invest Ophthalmol Vis Sci 2012, 53(9): 5231-5241.
64. Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14: 782-806.
65. Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res 2005, 81(2): 123-137.
66. Hafezi F, Marti A, Munz K, Reme CE. Light-induced apoptosis: differential timing in the retina and pigment epithelium. Exp Cell Res 1997, 64(6): 963-970.
67. Hsu YJ, Wang LC, Yang WS, Yang CM, Yang CH. Effects of fenofibrate on adiponectin expression in retinas of streptozotocin-induced diabetic rats. Journal of diabetes research 2014, 2014: 540326.
68. Schatz A, Arango-Gonzalez B, Fischer D, Enderle H, Bolz S, Rock T, et al. Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest Ophthalmol Vis Sci 2012, 53(9): 5552-5561.
69. Collier RJ, Wang Y, Smith SS, Martin E, Ornberg R, Rhoades K, et al. Complement deposition and microglial activation in the outer retina in light-induced retinopathy: inhibition by a 5-HT1A agonist. Invest Ophthalmol Vis Sci 2011, 52(11): 8108-8116.
70. Fang IM, Yang CM, Yang CH, Chiou SH, Chen MS. Transplantation of induced pluripotent stem cells without C-Myc attenuates retinal ischemia and reperfusion injury in rats. Exp Eye Res 2013, 113: 49-59.
71. Gordon WC, Casey DM, Lukiw WJ, Bazan NG. DNA damage and repair in light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2002, 43(11): 3511-3521.
72. Meewes C, Brenneisen P, Wenk J, Kuhr L, Ma W, Alikoski J, et al. Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Free Radic Biol Med 2001, 30(3): 238-247.
73. Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res 2010, 29(2): 113-134.
74. Sliney DH. Quantifying retinal irradiance levels in light damage experiments. Curr Eye Res 1984, 3(1): 175-179.
75. Yu DY, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res 2005, 80(6): 745-751.
76. Newsome DA, Dobard EP, Liles MR, Oliver PD. Human retinal pigment epithelium contains two distinct species of superoxide dismutase. Invest Ophthalmol Vis Sci 1990, 31(12): 2508-2513.
77. Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 1980, 20(12): 1163-1171.
78. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Cell Res 2006, 83(2): 380-389.
79. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model. Environ Health Perspect 2014, 122(3): 269-276.
80. Organisciak DT, Darrow RM, Rapp CM, Smuts JP, Armstrong DW, Lang JC. Prevention of retinal light damage by zinc oxide combined with rosemary extract. Mol Vis 2013, 19: 1433-1445.
81. Organisciak DT, Wong P, Rapp C, Darrow R, Ziesel A, Rangarajan R, et al. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation. Photochem Photobiol 2012, 88(6): 1396-1407.
82. Zhang TZ, Fan B, Chen X, Wang WJ, Jiao YY, Su GF, et al. Suppressing autophagy protects photoreceptor cells from light-induced injury. Biochem Biophys Res Commun 2014, 450(2): 966-972.
83. Hahn P, Lindsten T, Lyubarsky A, Ying GS, Pugh EN, Jr., Thompson CB, et al. Deficiency of Bax and Bak protects photoreceptors from light damage in vivo. Cell Death Differ 2004, 11(11): 1192-1197.
84. Aydin B, Dinc E, Yilmaz SN, Altiparmak UE, Yulek F, Ertekin S, et al. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model. Cutan Ocul Toxicol 2014, 33(3): 192-196.
85. Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993, 11(4): 595-605.
86. Portera-Cailliau C, Sung CH, Nathans J, Adler R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 1994, 91(3): 974-978.
87. van Soest S, Westerveld A, de Jong PT, Bleeker-Wagemakers EM, Bergen AA. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 1999, 43(4): 321-334.
88. Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 2002, 120(11): 1435-1442.
89. Li F, Cao W, Anderson RE. Alleviation of constant-light-induced photoreceptor degeneration by adaptation of adult albino rat to bright cyclic light. Invest Ophthalmol Vis Sci 2003, 44(11): 4968-4975.
90. Chahory S, Keller N, Martin E, Omri B, Crisanti P, Torriglia A. Light induced retinal degeneration activates a caspase-independent pathway involving cathepsin D. Neurochem Int 2010, 57(3): 278-287.
91. Tomita H, Kotake Y, Anderson RE. Mechanism of protection from light-induced retinal degeneration by the synthetic antioxidant phenyl-N-tert-butylnitrone. Invest Ophthalmol Vis Sci 2005, 46(2): 427-434.
92. Sanvicens N, Gomez-Vicente V, Masip I, Messeguer A, Cotter TG. Oxidative stress-induced apoptosis in retinal photoreceptor cells is mediated by calpains and caspases and blocked by the oxygen radical scavenger CR-6. J Biol Chem 2004, 279(38): 39268-39278.
93. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002, 297(5579): 259-263.
94. Sparrow JR, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 2001, 42(6): 1356-1362.
95. Wu J, Gorman A, Zhou X, Sandra C, Chen E. Involvement of caspase-3 in photoreceptor cell apoptosis induced by in vivo blue light exposure. Invest Ophthalmol Vis Sci 2002, 43(10): 3349-3354.
96. Li GY, Osborne NN. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 2008, 1188: 35-43.
97. Rozanowski B, Burke JM, Boulton ME, Sarna T, Rozanowska M. Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 2008, 49(7): 2838-2847.
98. Sperling HG, Wright AA, Mills SL. Color vision following intense green light exposure: data and a model. Vision Res 1991, 31(10): 1797-1812.
99. Kokkinopoulos I. 670 nm LED ameliorates inflammation in the CFH(-/-) mouse neural retina. J Photochem Photobiol B 2013, 122: 24-31.
100. Wasowicz M, Morice C, Ferrari P, Callebert J, Versaux-Botteri C. Long-term effects of light damage on the retina of albino and pigmented rats. Invest Ophthalmol Vis Sci 2002, 43(3): 813-820.
101. Ortin-Martinez A, Jimenez-Lopez M, Nadal-Nicolas FM, Salinas-Navarro M, Alarcon-Martinez L, Sauve Y, et al. Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Invest Ophthalmol Vis Sci 2010, 51(6): 3171-3183.
102. Chrysostomou V, Stone J, Valter K. Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival. Invest Ophthalmol Vis Sci 2009, 50(5): 2407-2416.
103. Szel A, Rohlich P. Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res 1992, 55(1): 47-52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2615-
dc.description.abstract照明是生活的基本需求,人工光源也由照亮空間的基本要求,延伸至人因工程所關注的健康與舒適考量。近來各界積極推動節能照明,發光二極體 (Light Emitting Diode, LED) 照明以環保節能的優勢深獲期許,其中室內照明以白光LED做為替代光源頗具潛力與代表性。而 LED屬固態發光 (Solid State Lighting, SSL) 的一種,是由半導體材料所製成的發光元件,不同材料與製程可發出不同的波長,視覺系統藉此感受到不同顏色的光。LED 的發光特性與光學表現適合應用於指示性的用途,當轉型發展成為一般照明,目前符合經濟效益且成為主流的白光LED,大多為藍色晶片搭配黃色螢光粉的 (phosphate-conversion, PC) 的型態,而其光譜有一大區間落於400 nm – 550 nm,屬於視網膜藍光危害區,且其中尖銳的藍光波峰所呈現的單點強度,可能對視網膜產生傷害而未被人眼察覺,長期低劑量的暴露也可能對黃斑部產生累積性的負面效應而不自覺。因此LED 照明如何呈現最適合生理機轉的光學表現,有待醫學及公衛體系的專業研究並加以定義。
本研究之目的在探討以白光LED為室內照明光源時,其所含不同波長光線對於視網膜的潛在影響。有別於前人研究多以短時間(數秒至數天)的方式進行,本研究針對白光LED作為室內照明光源之波長與頻譜分佈進行長期低暴露分析,透過大鼠動物實驗,以視網膜電波圖 (electroretinogram , ERG) 檢查視網膜功能上所受的衝擊,同時以多種組織切片觀察感光細胞形貌上的改變,以及透過生化分析觀察細胞受到氧化壓力而引發的凋亡和壞死狀況,探討視網膜光傷害的機轉,研析白光LED 照明對使用者視網膜生理結構的影響。為達成此研究目的,整體研究架構以二階段實驗方式進行。
第一階段以藍光 LED (460 nm) 以及全頻譜的白光 LED (CCT 6500) 搭配相對應的螢光燈管 (CFL, CCT 6500) 和黃光 (CFL, CCT 2700) 對大鼠進行照光暴露實驗,以證實在參數相同的暴露環境中,LED 比 CFL 更容易誘發視網膜的光傷害。接著第二段實驗以三種不同波段的LED 光源,包括藍光( 460 nm)、綠光 (530 nm)及紅光 (620 nm) 進行比對,透過更深入的生化分析工具,觀察 LED 所誘發的視網膜光傷害是否存在波長的劑量效應關係,以及其傷害機轉。實驗結果證實大鼠視網膜感光細胞在不同光源的暴露下產生的光化學危害 (photochemical injury) ,細胞結構變化是由氧化壓力所引發,且呈現波長的劑量效應關係。相同暴露參數下,波長越短造成的傷害越強,因而推論在大鼠實驗中,做為室內照明的白光LED光源中,藍光對視網膜的危害貢獻最多。
以環境衛生的角度,本研究結果提醒以LED 做為室內照明時,必須特別留意頻譜中藍光的比重分佈。同時也提供予相關產業於產品研發時挹注健康的考量因子,並呼籲使用者注意暴露風險與防範措施 。然而以風險評估的觀點而言,此動物實驗結果並無法直接定義人類的使用風險,尚須經過適當的評估或甚至進一步的人體暴露分析才能得到具體結論,未來應有更多學者延續此主題的研究。
zh_TW
dc.description.abstractThe rapid development of white light-emitting diode (LED) lighting has raised serious retinal hazard concerns. LED delivers higher levels of blue light to the retina compared to conventional domestic light sources. However, the majority of the published retinal blue light injury studies are either in anesthetized animals or in vitro with high exposure intensity for acute injury assessment. The significance of the blue component in LED lighting contributing to the injury needs further study in a free-running animal model with chronic exposure setting.
This study intends to assess the potential adverse effects from exposure to the domestic LED lights with different wavelengths. Two sets of LED-induced retinal neuronal cell damage in the Sprague-Dawley rat models through functional, histological, and biochemical measurements were completed. In the first part of study, blue LED (460 nm) and full-spectrum white LED (CCT 6500) coupled with matching compact fluorescent lamps (CFL) were used for exposure treatments. The results suggested that the LED white light has a higher chance to induce retinal photochemical injury (RPI) than does the conventional CFL white light. The results raise questions related to adverse effects on the retina from chronic LED light exposure compared to current lamp sources that have less blue light. To further assess the risk, LED induced RPI with wavelength dependency and its mechanism were focused on the second part of study.
Although there has been a wealth of studies describing the RPI associated with wavelength dependency previously, the experimental settings were focused on high intensity light exposure over a short period of time (a few seconds to 3 days) for acute or subacute toxicity assessments. The tested animals were anesthetized or forced to stare into the lights in most of the cases, and the light sources varied due to contemporary technology availability. Thus, in the second part of study, blue (460 nm), green (530 nm), and red (620 nm) LEDs were investigated to measure how specific bands were responsible for retinal phototoxic effects under the same irradiance level at 102 μW/cm2. Both functional and histopathological results indicated blue light-induced RPI. The oxidative stress and iron-related molecular markers suggested that blue LED exposure increased retinal toxicity compared with longer wavelength LEDs. Biochemical assays on lipid, protein, and DNA also showed higher oxidative expressions after blue LED exposure. LED light-induced retinal injury could be due to oxidative stress through iron overload. Several biomarkers confirmed the greater risk of LED blue-light exposure in awake, task-oriented rod-dominant animals.  
Based on the study results, it is concluded that LED light exposure may induce RPI through oxidative stress with a wavelength-dependent effect. More importantly, the long-term effects of exposure to low doses of domestic lighting may lead to serious retinal degenerative diseases. Several functional, morphological, and biochemical measurements were applied to characterize the exposure results associated with this injury. The wavelength-dependent effect should be considered carefully when switching to LED domestic lighting applications. However, the exact mechanism underlying these effects will be the subject of ongoing investigation with more analytical methods. The interpretation from the animal study to human applications should also be carefully considered based on the risk assessment perspective.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:43:11Z (GMT). No. of bitstreams: 1
ntu-106-D99844001-1.pdf: 10353219 bytes, checksum: ac555bb45971f63df683042460c11427 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable of Contents i
Dedication i
Acknowledgements ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
List of Tables x
Abbreviations xi
1 INTRODUCTION 1
1.1 Background 1
1.1.1 Light affects daily living through vision 1
1.1.2 Artificial light sources 1
1.1.3 Energy saving lighting 3
1.1.4 Learning from the history 3
1.2 Objectives 4
1.2.1 Direct outcome 5
1.2.2 Indirect influence 6
2 LITERATURE REVIEW 7
2.1 Light 7
2.1.1 Light Source 7
2.1.1.1 Light Properties 7
2.1.2 Light Measurement 8
2.1.2.1 Color Temperature 8
2.1.2.2 Intensity 11
2.1.3 Solid State Lighting (SSL) 14
2.1.3.1 Solid State Light Segments 14
2.1.3.2 LED Light Characteristics 14
2.1.3.3 LED Light for Lighting 16
2.1.3.4 White Light LED Performance Diversification 20
2.2 Retinal Physiopathology 22
2.2.1 Retina React with Light 22
2.2.2 Retina Light Injury 24
2.2.3 Action Spectrum of Retinal Light Injury 26
2.2.4 Progress of Photoreceptor Light Induced Injury 27
2.2.5 Animal Model for Retinal Light Injury 28
2.3 Potential retinal injury induced by chronic exposure to LED light 30
2.3.1 Data Collection and Selection 30
2.3.2 Retinal Light Injury vs. LED Lighting 31
2.3.3 Retinal Light Injury Mechanisms 32
2.3.4 Principal of the domestic lighting exposure 33
3 RESEARCH DESIGN AND METHODS 34
3.1 Hypotheses of photochemical injury 34
3.2 Animal handling and light exposure plan 35
3.2.1 Animals and rearing conditions 35
3.2.1.1 For the comparison of CFL vs. LED 35
3.2.1.2 For the comparison of RGB LEDs 37
3.2.2 Light source 37
3.2.2.1 For the comparison of CFL vs. LED 37
3.2.2.2 For the comparison of RGB LEDs 39
3.2.3 Light exposure 40
3.2.3.1 For the comparison of CFL vs. LED 40
3.2.3.2 For the comparison of RGB LEDs 41
3.3 Sample pretreatment 42
3.4 Analytical Methods 43
3.4.1 Electroretinography (ERG) 43
3.4.2 Hematoxylin and eosin (H&E staining) 45
3.4.3 Transmission electron microscopy (TEM) analysis 46
3.4.4 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 48
3.4.5 Immunohistochemistry (IHC) 48
3.4.6 Free radical assay (reactive oxidative species, ROS) 49
3.4.7 Western blotting (WB) 49
3.4.8 Hydrogen peroxide (H2O2) assay 50
3.4.9 Total iron and ferric (Fe3+) assay 51
3.5 Statistical analysis 51
4 RESULTS AND DISCUSSION 52
4.1 White LED at domestic lighting level to induce retinal injury 52
4.1.1 Electrophysiological response shows photoreceptor cell function loss 52
4.1.2 Retinal histology–H&E staining showing layer damages 54
4.1.3 Apoptosis Detection - TUNEL staining detects nuclear apoptosis 56
4.1.4 TEM demonstrations on the cellular injury 58
4.1.5 Immunohistochemistry (IHC) staining results indicating retinal light injury 60
4.1.6 Oxidative Stress -- superoxide anion O2-. shows the injury 62
4.2 Mechanism of LED induced retinal injury and its wavelength dependency 64
4.2.1 Functional and morphological alterations 64
4.2.2 RPI oxidative stress markers expression 70
4.2.3 Iron metabolism and superoxide products 73
4.3 Discussion 78
4.3.1 Retinal light injury susceptibility between human and experimental animals 78
4.3.2 Oxidative stress induced injury 79
4.3.3 Low-intensity chronic exposure 79
4.3.4 LED-induced RPI is wavelength-dependent 80
4.3.5 Oxidative stress and photon absorption-stimulated RPI 80
4.3.6 Iron-related RPI oxidative pathway 82
4.3.7 Wavelength (hue) discrimination and specie differences 82
4.3.8 Environmental health perspectives 83
5 CONCLUSION 85
5.1 LED lighting induces retinal light injury 85
5.2 Blue light makes the most contribution to retinal light injury 86
5.3 The way ahead 86
6 REFERENCES 89
7 APPENDIX 95
dc.language.isoen
dc.title發光二極體做為室內照明光源對視網膜影響之大鼠研究zh_TW
dc.titleLight Emitting Diode(LED) lighting as domestic light source and retina injury in rat modelsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.coadvisor楊長豪(Chang-Hao Yang)
dc.contributor.oralexamcommittee程金保(Chin-Pao Cheng),陳保中(Pau-Chung Chen),黃耀輝(Yaw-Huei Hwang),林隆光(Luke Long-Kuang Lin),馮丹白(Dan-Pai Feng)
dc.subject.keyword視力,視網膜,光傷害,照明,氧化壓力,發光二極體,藍光危害,zh_TW
dc.subject.keywordLED,light damage,retina,eye,retinal light injury,blue light,oxidative stress,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201700186
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-02-09
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf10.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved