請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26155
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fan Chen) | |
dc.contributor.author | Meng-Lin Lu | en |
dc.contributor.author | 呂孟霖 | zh_TW |
dc.date.accessioned | 2021-06-08T07:01:33Z | - |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-03-20 | |
dc.identifier.citation | Chapter 1
Reference 1. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett. 2002, 81, 1869. 2. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, J. Phys. Chem. B 2003, 107, 659. 3. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. Weinheim, Ger. 2003, 15, 997. 4. S. V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A. P. Baddorf, Y. Lilach, M. Moskovits, and A. Kolmakov, J. Appl. Phys. 2005, 98, 044503. 5. Q. H. Li, Y. J. Chen, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 2004, 85, 1805. 6. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B 2002, 106, 3823. 7. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater. 2003, 13, 493. 8. D. Calestani, L. Lazzini, G. Salviati, and M. Zha, Cryst. Res. Technol. 2005, 40, 937. 9. G. Faglia, C. Batto, G. Sberveglieri, M. Zha, and A. Zappettini, Appl. Phys. Lett. 2005, 86, 011923. 10. D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, and L. Chen, Mater. Lett. 2005, 59, 1984. 11. D. Maestre, A. Cremades, and J. Piqueras. J. Appl. Phys. 2005, 97, 044316 12. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. Engl. 2002, 41, 2405. 13. H. Yan et al., Adv. Mater. 2003, 15, 1907. 14. H. Mass, A. Currao, G. Calzaferri, Angew. Chem. Int. Ed. 2002, 41, 2495. 15. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, C. Y. Mou, Adv. Mater. 2007, 19, 577. 16. E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059. 17. S. John, Phys. Rev. Lett. 1987, 58, 2486. 18. N. Tétreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, Adv. Mater. 2005, 17, 1912. 19. E. Feltin, G. Christmann, R. Butté, J-F. Carlin, M. Mosca, and N. Grandjean, Appl. Phys. Lett. 2006, 89, 071107. 20. R. K. Price IEEE J. Quan. Elec. 2006, 42, 667. 21. M. Skorobogatiy, and A. V. Kabashin, Appl. Phys. Lett. 2006, 89, 143518. 22. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 1996, 77, 3787. 23. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, Appl. Phys. Lett. 2006, 89, 201102. 24. A. C. Arsenault, T. J. Clark T, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, Nat. Mater. 2006, 5, 175. 25. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, Appl. Phys. Lett. 2007, 90, 193504. Chapter 2 Reference 1. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors. 2. S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy. 3. H. J. Queisser, Phys. Rev. Lett. 1985, 54, 234. 4. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B 2002, 106, 3823. 5. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater. 2003, 13, 493. 6. D. Calestani, L. Lazzini, G. Salviati, and M. Zha, Cryst. Res. Technol. 2005, 40, 937. 7. G. Faglia, C. Batto, G. Sberveglieri, M. Zha, and A. Zappettini, Appl. Phys. Lett. 2005, 86, 011923. 8. D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, and L. Chen, Mater. Lett. 2005, 59, 1984. 9. D. Maestre, A. Cremades, and J. Piqueras. J. Appl. Phys. 2005, 97, 044316 10. S. Banerjee, A. Dan, and D. Chakravorty, Review Synthesis of conducting nanowires, J. Mater. Sci. 2002, 37, 4261. 11. R. S. Wagner and W. C. Ellis, VLS mechanism, Appl. Phys. Lett. 1964, 4, 89. 12. Givarzikov, Growth of Whiskers by the Vapor-Liquid-Solid mechanism, E. Kaldis (Ed.), Current Topics in Materials Science 1978. 13. Y. Wu and P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, J. Am. Chem. Soc. 2001, 123, 3165. 14. M. S. Gudiksen, J. Wang, and C. M. Lieber, Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires, J. Phys. Chem. B 2001, 105, 4062. 15. E. P. A. M. Bakkers and M. A. Verheijen, Synthesis of InP Nanotubes, J. Am. Chem. Soc. 2003, 125, 3440. 16. X. H. Chen, M. Moskovits, Nano. Lett. 2007, 7, 807. 17. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, C. Y. Mou, Adv. Mater. 2007, 19, 577. 18. V. L. Colvin, M. C. Schlamp, A. P. Alivisato, Nature 1994, 370, 34 Chapter 3 Reference 1. Lin, Y. S.; Hung, Y.; Lin, H. Y.; Tseng, Y. H.; Chen, Y. F.; Mou, C. Y. Adv. Mater. 2007, 19, 577. 2. Chen, X. H.; Moskovits, M. Nano. Lett. 2007, 7, 807.D. J. Sirbuly, M. Law, J.C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, Science 2004, 305, 1269. 3. C. W. Chen, Y. F. Chen Appl. Phys. Lett. 2007, 90, 071104.J. Wiersig, Phys. Rev. A 2003, 67, 023807.G. R. Fowles, Introduction to Modern Optics. 1975. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26155 | - |
dc.description.abstract | 本論文中,我們主要研究二氧化錫奈米線、氫氧化鋱/二氧化矽核-殼結構光子晶體以及光子晶體上長二氧化錫奈米線的複合材料的發光特性,借由光激發螢光光譜 (PL) , 陰極射線激發螢光光譜 (CL) ,拉慢散射等實驗來研究其發光性質。這些研究對於此材料的應用上有很大的幫助。
藉由我們新製作由二氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之複合材料,我們可以看到激發螢光被侷限在光子晶體中由於光子晶體結構所構成的能帶可經由二氧化錫奈米線引導出來,而奈米線就相當於光導。由於有奈米線的存在,激發螢光的強度也會相當大程度的提高。這就很像日常生活中一個地下水庫裡存滿水,經由水管,可將水導出地球表面。因此我們稱這個新的奈米複合材料為光噴泉。我們將會呈現出二氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之複合材料的陰極射線激發螢光強度大量的提升相對於氫氧化鋱/二氧化矽核-殼結構光子晶體。 在這個新的氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之奈米複合材料上,我們發現可輕易的觀察到雷射現象。我們已經闡述了二氧化錫奈米線作為光導將侷限在光子晶體中的激發螢光導出來,就像是光的噴泉一樣;相對於單純的光子晶體來講,這個複合材料的發光大大的提升了,而這個材料提供一個很好的環境來造成受激發射,因此這新穎的材料在作成雷射原件上將非常有用。 | zh_TW |
dc.description.abstract | In this thesis we report the study of optical properties of SnO2 nanowires, photonic crystal formed by Tb(OH)3/SiO2 core/shell nanospheres and SnO2-Tb(OH)3/SiO2 nanocomposites. Photoluminescence (PL), Cathodoluminescence (CL), Raman scattering have been performed. Some peculiar results have been obtained from our studies, which are very useful for the understanding as well as applications of these materials.
Based on our newly developed nanocomposites consisting of SnO2 nanowires and photonic crystals based on Tb(OH)3/SiO2 core/shell nanoparticles,1-2 we will show that the light confined inside the photonic crystals due to the formation of stop band can be directed along SnO2 nanowires and gets into air. SnO2 nanowires now serve as a waveguide.3 Because most of the emission arising from Tb ions is directed along SnO2 nanowires, the output emission intensity can be greatly enhanced. This behavior is similar to the design of water fountain in our daily life, in which the water confined under ground is directed to the earth surface through a water pipe. In this thesis, we will show the giant enhancement of the CL emission intensity for the SnO2-Tb(OH)3/SiO2 nanocomposite compared to the pure Tb(OH)3/SiO2 photonic crystal. It is found that lasing behavior can be easily achieved using the nanocomposite consisting of SnO2 nanowires and photonic crystals (PCs) based on Tb(OH)3/SiO2 core/shell nanospheres. Due to the fact that the light output from SnO2 nanowires can be greatly enhanced, it therefore establishes an excellent environment for the observation of stimulated emission. The novel composites developed here should be very useful for the creation of new lasing devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:01:33Z (GMT). No. of bitstreams: 1 ntu-98-R95222055-1.pdf: 1825787 bytes, checksum: d7da3626e034ce587b25e8da37f374dd (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要………………………….……………………………………………...……..….ii
Abstract…………………….....…………….....………………………………..…....iii Contents…………………...……………..…………...................................................v List of figures………………...……………..………………………………….……vii 1. Introduction…………………………………………………………..………………1 Reference………………………………………………………..….………...……….4 2. Theoretical Background and Sample preparation…......................................……..7 2.1 Photoluminescence(PL)…………………………………………………….…7 2.1.1 Photoluminescence ……………………………………………………….7 2.1.2 Photoluminescence Apparatus…………………………......……………..9 2.1.3 The PL spectrum of SnO2 nanowires………………………….…………11 2.2 Raman Scattering…………………………………………………………….12 2.2.1 Introduction………………………………………………….…………..12 2.2.2 Stokes shift and Anti Stokes shift……………………………..…………12 2.2.3 Raman Scattering Apparatus…………………………………….………16 2.2.4 The Raman spectrum of SnO2 nanowires………………………………..19 2.3 Cathodoluminescence…………………………………………………..…….20 2.3.1 Cathodoluminescence…………………………………..………………..20 2.3.2 The Cathodoluminescence Apparatus…………………………………...22 2.3.3 The CL spectrum of SnO2 nanowires……………………………...…….23 2.4 Vapor–Liquid–Solid growth…………………………………………………24 2.4.1 VLS mechanism of nanowire growth……………………………………24 2.4.2 Vapor–Liquid–Solid growth of SnO2 nanowires………….…………….26 2.5 Photonic crystal…………………………………………………………..…..27 2.5.1 Introduction of Photonic crystal………………………………………....27 2.5.2 Self-assembling of the Tb(OH)3/SiO2 core/shell photonic crystals….….29 2.6 Waveguides…………………………………………………………………..30 2.7 Sample Preparation…………………………………………………………..32 Reference…………………………………………………………………….....……34 3. CL spectra enhanced and lasing behavior from light fountain based on SnO2-Tb(OH)3/SiO2 nanocomposites…..…………………………………….….…36 Reference.....................................................................................................................49 4. Conclusion…………………………………………......................................……….50 | |
dc.language.iso | en | |
dc.title | 二氧化錫奈米線以及氫氧化鋱/二氧化矽核-殼結構
光子晶體奈米複合材料之光學特性研究 | zh_TW |
dc.title | Optical Properties of SnO2 nanowires
and SnO2-Tb(OH)3/SiO2 core/shell photonic crystals nanocomposites | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張顏輝 | |
dc.contributor.oralexamcommittee | 沈志霖 | |
dc.subject.keyword | 二氧化錫,奈米線,氫氧化鋱/二氧化矽核-殼結構光子晶體,光導,雷射現象, | zh_TW |
dc.subject.keyword | SnO2,nanowire,Tb(OH)3/SiO2 core/shell structure,photonic crystal,waveguide,lasing, | en |
dc.relation.page | 51 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-03-23 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。