請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26152
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳美如 | |
dc.contributor.author | I-Hua Liu | en |
dc.contributor.author | 劉伊華 | zh_TW |
dc.date.accessioned | 2021-06-08T07:01:29Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | Akbari, M., Otterlei, M., Pena-Diaz, J., Aas, P. A., Kavli, B., Liabakk, N. B., Hagen, L., Imai, K., Durandy, A., Slupphaug, G. & Krokan, H. E. (2004). Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res 32, 5486-5498.
Burgers, P. M. & Klein, M. B. (1986). Selection by genetic transformation of a Saccharomyces cerevisiae mutant defective for the nuclear uracil-DNA-glycosylase. J Bacteriol 166, 905-913. Caradonna, S., Worrad, D. & Lirette, R. (1987). Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase. J Virol 61, 3040-3047. Chang, L. K. & Liu, S. T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-3925. Chang, S.-M. (2008). Characterization of Epstein-Barr virus BKRF3 Uracil-DNA Glycosylase and Its Interaction with Proteins in Viral Replication Compartment. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-8866. Chen, Y. L., Chen, Y. J., Tsai, W. H., Ko, Y. C., Chen, J. Y. & Lin, S. F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65. Collandre, H., Guetard, D. & Montagnier, L. (1984). Induction of EBV DNA demethylation and of EBV-specific transcription in Daudi cells treated with TPA and n-butyrate. Intervirology 22, 201-210. Conner, J., Murray, J., Cross, A., Clements, J. B. & Marsden, H. S. (1995). Intracellular localisation of herpes simplex virus type 1 ribonucleotide reductase subunits during infection of cultured cells. Virology 213, 615-623. Courcelle, C. T., Courcelle, J., Prichard, M. N. & Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. J Virol 75, 7592-7601. Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H., Shirata, N. & Tsurumi, T. (2005). Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol 79, 3409-3418. Dianova, II, Bohr, V. A. & Dianov, G. L. (2001). Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry 40, 12639-12644. Donnenberg, M. S. & Kaper, J. B. (1991). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59, 4310-4317. Duncan, B. K., Rockstroh, P. A. & Warner, H. R. (1978). Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J Bacteriol 134, 1039-1045. Edelheit, O., Hanukoglu, A. & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9, 61. Elder, R. T., Zhu, X., Priet, S., Chen, M., Yu, M., Navarro, J. M., Sire, J. & Zhao, Y. (2003). A fission yeast homologue of the human uracil-DNA-glycosylase and their roles in causing DNA damage after overexpression. Biochem Biophys Res Commun 306, 693-700. Epstein, M. A., Barr, Y. M. & Achong, B. G. (1964). A Second Virus-Carrying Tissue Culture Strain (Eb2) of Lymphoblasts from Burkitt's Lymphoma. Pathol Biol (Paris) 12, 1233-1234. Fan, J., Otterlei, M., Wong, H. K., Tomkinson, A. E. & Wilson, D. M., 3rd (2004). XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32, 2193-2201. Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006. Focher, F., Mazzarello, P., Verri, A., Hubscher, U. & Spadari, S. (1990). Activity profiles of enzymes that control the uracil incorporation into DNA during neuronal development. Mutat Res 237, 65-73. Fortini, P. & Dogliotti, E. (2007). Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6, 398-409. Guittet, O., Hakansson, P., Voevodskaya, N., Fridd, S., Graslund, A., Arakawa, H., Nakamura, Y. & Thelander, L. (2001). Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J Biol Chem 276, 40647-40651. Hagen, L., Kavli, B., Sousa, M. M., Torseth, K., Liabakk, N. B., Sundheim, O., Pena-Diaz, J., Otterlei, M., Horning, O., Jensen, O. N., Krokan, H. E. & Slupphaug, G. (2008). Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J 27, 51-61. Hammerschmidt, W. & Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Haug, T., Skorpen, F., Aas, P. A., Malm, V., Skjelbred, C. & Krokan, H. E. (1998). Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res 26, 1449-1457. Henle, G., Henle, W. & Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101. Ishibashi, T., So, K., Cupples, C. G. & Ausio, J. (2008). MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol Cell Biol 28, 4734-4744. Iwahori, S., Murata, T., Kudoh, A., Sato, Y., Nakayama, S., Isomura, H., Kanda, T. & Tsurumi, T. (2009). Phosphorylation of p27Kip1 by Epstein-Barr virus protein kinase induces its degradation through SCFSkp2 ubiquitin ligase actions during viral lytic replication. J Biol Chem 284, 18923-18931. Jia, Q., Chernishof, V., Bortz, E., McHardy, I., Wu, T. T., Liao, H. I. & Sun, R. (2005). Murine gammaherpesvirus 68 open reading frame 45 plays an essential role during the immediate-early phase of viral replication. J Virol 79, 5129-5141. Jordan, A. & Reichard, P. (1998). Ribonucleotide reductases. Annu Rev Biochem 67, 71-98. Kavli, B., Sundheim, O., Akbari, M., Otterlei, M., Nilsen, H., Skorpen, F., Aas, P. A., Hagen, L., Krokan, H. E. & Slupphaug, G. (2002). hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277, 39926-39936. Ko, R. & Bennett, S. E. (2005). Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair (Amst) 4, 1421-1431. Krusong, K., Carpenter, E. P., Bellamy, S. R., Savva, R. & Baldwin, G. S. (2006). A comparative study of uracil-DNA glycosylases from human and herpes simplex virus type 1. J Biol Chem 281, 4983-4992. Kudoh, A., Fujita, M., Zhang, L., Shirata, N., Daikoku, T., Sugaya, Y., Isomura, H., Nishiyama, Y. & Tsurumi, T. (2005). Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280, 8156-8163. Kudoh, A., Iwahori, S., Sato, Y., Nakayama, S., Isomura, H., Murata, T. & Tsurumi, T. (2009). Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83, 6641-6651. Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R. (2007). Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81, 5166-5180. Lee, C. P., Huang, Y. H., Lin, S. F., Chang, Y., Chang, Y. H., Takada, K. & Chen, M. R. (2008). Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913-11926. Lehman, I. R. & Boehmer, P. E. (1999). Replication of herpes simplex virus DNA. J Biol Chem 274, 28059-28062. Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-727. Lindahl, T. (1974). An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A 71, 3649-3653. Lu, C. C., Huang, H. T., Wang, J. T., Slupphaug, G., Li, T. K., Wu, M. C., Chen, Y. C., Lee, C. P. & Chen, M. R. (2007). Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol 81, 1195-1208. Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. & Chen, M. R. (2006). Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345, 358-372. Mauser, A., Holley-Guthrie, E., Zanation, A., Yarborough, W., Kaufmann, W., Klingelhutz, A., Seaman, W. T. & Kenney, S. (2002). The Epstein-Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. J Virol 76, 12543-12552. Milho, R., Gill, M. B., May, J. S., Colaco, S. & Stevenson, P. G. (2011). In vivo function of the murid herpesvirus-4 ribonucleotide reductase small subunit. J Gen Virol 92, 1550-1560. Miller, V. L. & Mekalanos, J. J. (1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575-2583. Mosbaugh, D. W. & Bennett, S. E. (1994). Uracil-excision DNA repair. Prog Nucleic Acid Res Mol Biol 48, 315-370. Mullaney, J., Moss, H. W. & McGeoch, D. J. (1989). Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. J Gen Virol 70 ( Pt 2), 449-454. Nakamura, N., Morinaga, H., Kikuchi, M., Yonekura, S., Ishii, N., Yamamoto, K., Yonei, S. & Zhang, Q. M. (2008). Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis 23, 407-413. Niida, H., Katsuno, Y., Sengoku, M., Shimada, M., Yukawa, M., Ikura, M., Ikura, T., Kohno, K., Shima, H., Suzuki, H., Tashiro, S. & Nakanishi, M. (2010). Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 24, 333-338. Old, L. J., Boyse, E. A., Oettgen, H. F., Harven, E. D., Geering, G., Williamson, B. & Clifford, P. (1966). Precipitating antibody in human serum to an antigen present in cultured burkitt's lymphoma cells. Proc Natl Acad Sci U S A 56, 1699-1704. Otterlei, M., Haug, T., Nagelhus, T. A., Slupphaug, G., Lindmo, T. & Krokan, H. E. (1998). Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res 26, 4611-4617. Otterlei, M., Warbrick, E., Nagelhus, T. A., Haug, T., Slupphaug, G., Akbari, M., Aas, P. A., Steinsbekk, K., Bakke, O. & Krokan, H. E. (1999). Post-replicative base excision repair in replication foci. EMBO J 18, 3834-3844. Parker, A., Gu, Y., Mahoney, W., Lee, S. H., Singh, K. K. & Lu, A. L. (2001). Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem 276, 5547-5555. Parlanti, E., Locatelli, G., Maga, G. & Dogliotti, E. (2007). Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res 35, 1569-1577. Pontarin, G., Fijolek, A., Pizzo, P., Ferraro, P., Rampazzo, C., Pozzan, T., Thelander, L., Reichard, P. A. & Bianchi, V. (2008). Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 105, 17801-17806. Prichard, M. N., Lawlor, H., Duke, G. M., Mo, C., Wang, Z., Dixon, M., Kemble, G. & Kern, E. R. (2005). Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2, 55. Pulukuri, S. M., Knost, J. A., Estes, N. & Rao, J. S. (2009). Small interfering RNA-directed knockdown of uracil DNA glycosylase induces apoptosis and sensitizes human prostate cancer cells to genotoxic stress. Mol Cancer Res 7, 1285-1293. Pyles, R. B. & Thompson, R. L. (1994). Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J Virol 68, 4963-4972. Ragoczy, T., Heston, L. & Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-7984. Reichard, P., Baldesten, A. & Rutberg, L. (1961). Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J Biol Chem 236, 1150-1157. Rodriguez, A., Jung, E. J., Yin, Q., Cayrol, C. & Flemington, E. K. (2001). Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284, 159-169. Simon, R. (1984). High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196, 413-420. Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N. M., Haug, T., Levine, D. W. & Krokan, H. E. (1995). Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128-138. Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E. & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87-92. Stivers, J. T. & Jiang, Y. L. (2003). A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 103, 2729-2759. Studebaker, A. W., Ariza, M. E. & Williams, M. V. (2005). Depletion of uracil-DNA glycosylase activity is associated with decreased cell proliferation. Biochem Biophys Res Commun 334, 509-515. Swenson, J. J., Mauser, A. E., Kaufmann, W. K. & Kenney, S. C. (1999). The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73, 6540-6550. Szyf, M., Eliasson, L., Mann, V., Klein, G. & Razin, A. (1985). Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proc Natl Acad Sci U S A 82, 8090-8094. Traut, T. W. (1994). Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140, 1-22. Tsai, C. H., Williams, M. V. & Glaser, R. (1991). Characterization of two monoclonal antibodies to Epstein-Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47-52. Upton, C., Stuart, D. T. & McFadden, G. (1993). Identification of a poxvirus gene encoding a uracil DNA glycosylase. Proc Natl Acad Sci U S A 90, 4518-4522. Wang, J. T., Yang, P. W., Lee, C. P., Han, C. H., Tsai, C. H. & Chen, M. R. (2005). Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol 86, 3215-3225. Weiss, L. M., Strickler, J. G., Warnke, R. A., Purtilo, D. T. & Sklar, J. (1987). Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 129, 86-91. Whitehurst, C. B., Ning, S., Bentz, G. L., Dufour, F., Gershburg, E., Shackelford, J., Langelier, Y. & Pagano, J. S. (2009). The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83, 4345-4353. Willetts, K. E., Rey, F., Agostini, I., Navarro, J. M., Baudat, Y., Vigne, R. & Sire, J. (1999). DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. J Virol 73, 1682-1688. Wilson, J. B. & May, G. H. W. (2001). Epstein-Barr virus protocols. Totowa, N.J.: Humana Press. Zeitlin, S. G., Chapados, B. R., Baker, N. M., Tai, C., Slupphaug, G. & Wang, J. Y. (2011). Uracil DNA N-glycosylase promotes assembly of human centromere protein A. PLoS One 6, e17151. Zeng, Y., Middeldorp, J., Madjar, J. J. & Ooka, T. (1997). A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase. Virology 239, 285-295. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26152 | - |
dc.description.abstract | 尿嘧啶醣苷酶(uracil DNA glycosylase)是一群能夠移除DNA上尿嘧啶(Uracil),參與在鹼基切除修復(BER)的酵素。BKRF3為EB病毒在溶裂期早期轉錄轉譯出來的尿嘧啶醣苷酶。先前的研究發現BKRF3以及細胞中的UDG (UNG2)會參與在EB病毒溶裂期複製當中。而觀察此時蛋白質表現發現,隨著在上皮細胞溶裂期複製的進行,BKRF3表現量會逐漸上升,UNG2表現量會逐漸下降,推測在此時BKRF3可以補足UNG2下降所喪失的尿嘧啶醣苷酶活性,以維持病毒複製的效率。此外,外送BKRF3後提引細胞進入溶裂期複製,可觀察到其從細胞質轉移到細胞核的現象。因此,本篇論文的目的是要觀察BKRF3與其他病毒蛋白交互作用後,對於其進入到細胞核,以及對本身酵素活性,最後對病毒DNA複製的影響。第一部分利用免疫共沉澱法觀察到BKRF3與病毒核糖核苷酸還原酶(RR)交互作用可能十分微弱,因此未來還需進一步研究其他溶裂期早期病毒蛋白是否可以協助BKRF3入核,參與在病毒核酸複製區中。第二部分利用尿嘧啶醣苷酶酵素活性試驗發現溶裂期時,細胞內的尿嘧啶醣苷酶酵素活性可以維持在某一定程度,考慮到BKRF3純化出來的酵素活性低,此實驗結果暗示BKRF3的活性在溶裂期時可受刺激而提高,利用IP-UDG assay也證明BKRF3的酵素活性的確有上升的現象。另外,構建BKRF3缺失之突變病毒株來觀察BKRF3在溶裂期複製時所扮演的角色。目前已將此突變株轉染至293TetER細胞中,並已獲得兩株細胞株。未來可利用QPCR實驗進一步證明BKRF3參與在EB病毒溶裂期核酸複製區中。 | zh_TW |
dc.description.abstract | Uracil DNA glycosylase (UDG) is an enzyme that participates in the DNA base excision repair (BER). BKRF3 is a viral UDG encoded at the early phase of EBV lytic stage. Previous data have shown both BKRF3 and the cellular major UDG (UNG2) are involved in EBV lytic replication. Protein expression kinetics revealed that BKRF3 is upregulated, but UNG2 is downregulated along the progression of lytic cycle in epithelium cells, suggesting BKRF3 may compensate the UNG2 activity during virus lytic cycle to sustain the viral DNA replication efficiency. Besides, exogenous expression of BKRF3 can be translocated from cytoplasm to nucleus after lytic cycle induction. In this study we aimed to investigate the interaction between BKRF3 and other viral proteins that required for its nuclear localization, enzyme activity enhancement and viral DNA replication. The first part of experiments demonstrated that the interaction between BKRF3 and viral ribonucleotide reductase (RR) may be weak in co-IP assay. Therefore, other early viral proteins will be examined for possible interactions. In the second part, UDG activity assay demonstrated that total UDG activity was maintained at a particular level throughout EBV replication. Because the activity of the purified BKRF3 is low, the data suggest the UDG activity may be stimulated during lytic replication. IP-UDG assay revealed that the UDG activity was elevated during lytic cycle. Additionally, BKRF3-null EBV bacmid was generated to investigate the role of BKRF3 in viral replication. The mutant bacmid had been transfected into 293TetER cell line and two stable cell lines had been selected. Further experiments will be performed to prove the role of BKRF3 in viral replication compartment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:01:29Z (GMT). No. of bitstreams: 1 ntu-100-R98445112-1.pdf: 1915107 bytes, checksum: 74e32cf77c56742b40c1e52554463fdc (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………….i
誌謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………….I 英文摘要……………………………………………………………………………...II 一、 導論………………………………………………………………………………1 1. EB病毒(Epstein-Barr virus)............................................................................1 2. EB病毒溶裂期的核酸複製…………………………………………………2 3. 尿嘧啶醣苷酶(Uracil DNA glycosylase;UDG)……………………………3 4. 尿嘧啶磷酸酶與病毒複製…………………………………………………..6 5. 研究動機與目的……………………………………………………………8 二、 材料與方法………………………………………………………………………9 三、 結果……………………………………………………………………………21 1. BKRF3尿嘧啶醣苷酶在溶裂期複製中之酵素活性分析………………...21 2. BKRF3與病毒核糖核苷酸還原酶複合體BORF2/BaRF1三者之交互作用……………………………………………………………………………23 3. BKRF3尿嘧啶醣苷酶對EB病毒複製之影響…………………………….24 四、 討論……………………………………………………………………………26 1. BKRF3功能探討…………………………………………………………...26 2. 在EB病毒溶裂期時UNG2下降之可能原因……………………………..27 3. 核糖核苷酸還原酶與BKRF3交互作用…………………………………..28 五、 圖表……………………………………………………………………………31 六、 參考文獻………………………………………………………………………43 | |
dc.language.iso | zh-TW | |
dc.title | EB病毒尿嘧啶醣苷酶BKRF3在溶裂期核酸複製區之功能 | zh_TW |
dc.title | Characterization of EBV uracil DNA glycosylase BKRF3 in viral replication compartments | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施修明,林素芳,陳紀如 | |
dc.subject.keyword | EB病毒,BKRF3,UNG2, | zh_TW |
dc.subject.keyword | EBV,BKRF3,UNG2, | en |
dc.relation.page | 49 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。