請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱錦洲 | |
| dc.contributor.author | Cheng-Ta Hsieh | en |
| dc.contributor.author | 謝政達 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:01:26Z | - |
| dc.date.copyright | 2009-04-09 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-03-30 | |
| dc.identifier.citation | Alexander D. E. (1984) 'Unusual phase relationships between the forewings and hindwings in flying dragonflies.' J. Exp. Biol. 109, 379–83
Anderson J. M., Streitlien K, Barrett D. S. & Triantafyllou M. S. (1998) 'Oscillating foils of high propulsive efficiency.' J. Fluid Mech. 360, 41-50 Azuma A, Azuma S, Watanabe I & Furuta T. (1985) 'Flight mechanics of a dragonfly.' J. Exp.Biol. 116, 79–107 Azuma, A. & Watanabe, T. (1988) 'Flight performance of a dragonfly.' J. Exp. Biol. 137, 221-252. Biesheuvel, A. & Hagmeijer, R. (2006) 'On the force on a body moving in a fluid.' Fluid Dyn. Res. 38, 716–742. Bos, F. M., Lentink, D., Oudheusden, B. W. Van & Bijl, H. (2008) 'Influence of wing kinematics on aerodynamic performance in hovering insect flight.' J. Fluid Mech. 594, 341–368. Burgers, J. M. (1920) 'On the resistance of fluids and vortex motion.' Proc. Kon. Akad. Westenschappen te Amsterdam. Birch, J. M. & Dickinson, M. H. (2001) 'Spanwise flow and the attachment of the leading-edge vortex on insect wings.' Nature 412, 729-733. Birch, J. M. and Dickinson, M. H. (2003) The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257–72 Birch, J. M., Dickson, W. B. & Dickinson, M. H. (2004) 'Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.' J. Exp. Biol. 207, 1063 – 107 Brodsky A. K. (1994) 'The Evolution of Insect Flight.' Oxford: Oxford Univ. Press Clark, H. W. (1940) 'The adult musculature of the anisopterous dragonfly thorax (Odonata, Anisoptera).' J. Morph. 67, 523-565. Chang, C. C. (1992) 'Potential flow and forces for incompressible viscous flow.' Proc. R. Soc. A 437, 517–525. Chang, C. C. & Chern, R. L. (1991) 'A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method.' J. Fluid Mech. 233, 243–263. Chang, C. C. & Lei, S. Y. (1996) 'On the sources of aerodynamic forces: steady flow around a sphere or a cylinder.' Proc. R. Soc. A 452, 2369–2395. Chang, C. C., Yang, S. H. & Chu, C. C. (2008) 'A many-body force decomposition with applications to flow about bluff bodies.' J. Fluid Mech. 600, 95–104. Chang, C. C. & Lei, S. Y. (1996) 'An analysis of aerodynamic forces on a delta wing.' J. Fluid Mech. 316, 173-196. Chang, C. C., & Liou, B. H. (1992). 'An analytical and numerical study of axsymmetric flow around ellipsoids of circular section.' J. Fluid Mech. 234, 219-246. Chu, C. C., Chang, C. C. et al. (1996) 'Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction.' Phys. Fluids 11, 2995-3007. Childress S. (1981) 'Swimming and Flying in Nature.' Cambridge: Cambridge Univ. Press Childress S. and Dudley R. (2004) 'Transition from colliery to flapping mode in a swimming mollusk: flapping flight as a bifurcation in Reω.' J. Fluid Mech. 498, 257–88 Cloupeau M, Devillers J. F. & Devezeaux D. (1979) 'Direct measurements of instantaneous lift in desert locust: comparison with Jensen’s experiments on detached wings.' J. Exp. Biol. 80,1–15 Dalton S. (1975) 'Borne on the Wind.' New York: Reader’s Digest Press Dickinson, M. H. (1994) 'The effects of wing rotation on unsteady aerodynamic performance at low Reynolds number.' J. Exp. Biol. 192, 179–206. Dickinson, M. H. & Gotz, K. G. (1993) 'Unsteady aerodynamic performance of model wings at low Reynolds numbers.' J. Exp. Biol. 174, 45–64. Dickinson, M. H., Lehmann, F. O. & Sane, S. P. (1999) 'Wing rotation and the aerodynamic basis of insect flight.' Science 284, 1954–1960. Dickinson, M. H. (1996) 'Unsteady mechanisms of force generation in aquatic and aerial locomotion.' Am. Zool. 36, 537–54 Dudley R. (1998) 'The Biomechanics of Insect Flight: Form, Function, Evolution.' Princeton: Princeton Univ press. Ellington, C. P. (1984b) 'The aerodynamics of hovering insect flight. Ⅱ. Morphological Parameters.' Phil. Trans. R. Soc. Lond. B 305, 17-40. Ellington, C. P. (1984d) 'The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms.' Phil. Trans. R. Soc. Lond. B 305, 79-113. Ellington, C. P., Van den Berg, C., Willmott, A. P. & Thomas, A. L. R. (1996) 'Leading-edge vortices in insect flight.' Nature 384, 626-630. Ellington, C. P. (1999) 'The novel aerodynamics of insect flight: applications to micro- air vehicles. ' J. Exp. Biol. 202, 3439-3448. Fry S. N., Sayaman R, Dickinson, M. H. (2003) 'The aerodynamics of free-flight manueversin Drosophila.' Science 300, 495–98 Grodnitsky, D. L. & Morozov, P. P. (1992) 'Flow visualization experiments on tethered flying green lacewings Chrysopa Dasyptera.' J. Exp. Biol. 169, 143-163. Howarth, L. (1935) 'The theoretical determination of the lift coefficient for a thin elliptic cylinder.' Proc. R. Soc. London. Ser. A 149, 558-586. Howe, M. S. (1989) 'On unsteady surface forces, and sound produced by the normal chopping of a rectilinear vortex.' J. Fluid Mech. 206, 131–153. Howe, M. S. (1995) 'On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers.' Quart. J. Mech. Appl. Math. 48, 401–426. Howe, M. S., Lauchle, G. C. & Wang, J. (2001) 'Aerodynamic lift and drag fluctuations of a sphere ' J. Fluid Mech. 436, 41–57. Hsieh, C. T., Chang, C. C. & Chu, C. C. (2009) 'Revisiting the aerodynamics of hovering flight using simple models.' J. Fluid Mech. 623, 121-148. Isogai, K., Fujishiro, Saitoh, T., Yamamoto, M., Yamasaki, M. & Matsubara, M. (2004) 'Unsteady three-dimensional viscous flow simulation of a dragonfly hovering.' AIAA J. 42, 2053–2059. James, R. Usherwood & Fritz-Olaf Lehmann (2008) 'Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.' J. R. Soc. Interface Jones, M. (2003) 'The separated flow of an inviscid fluid around a moving flat plate and the unsteady kutta condition.' J. Fluid Mech. 496, 405–41 Kambe, T. (1986) 'Acoustics emissions by vortex motions.' J. Fluid Mech. 173, 643–666. Lamb, H. (1945) 'Hydrodynamics.' New York: Dover Lewin, G. C. & Haj-Hariri, H. (2003) 'Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow.' J. Fluid Mech. 492, 339–62 Lighthill, M. J. (1973) 'On Weis-Fogh mechanism of lift generation.' J. Fluid Mech. 60, 1–17. Lighthill M. J. (1975) 'Mathematical Biofluiddynamics.' Philadelphia: Soc. Ind. Appl. Math. Lighthill, M. J. (1979) 'Wave and hydrodynamic loading.' In: Proceedings of the Second International Conference on Behaviour of Off-Shore Structures, BHRA Cranfield, 1, 1-40. Lighthill, M. J. (1986) 'Fundamentals concerning wave loading on offshore structures.' J. Fluid Mech. 173, 667–681. Liu H, Ellington C, Kawachi K, van den Berg C, & Willmott A. P. (1998) 'A computational fluid dynamic study of hawkmoth hovering.' J. Exp. Biol. 201, 461-470 Landau, L. D. & Lifshitz, E. M. (1987) Fluid Mechanics (2nd ed.). Lehmann, F. –O. (2004) 'The mechanisms of lift enhancement in insect flight.', Naturwissenschaften 91,101-122 Lehmann, F. O., Dickinson, M. H., & Sane, S. P. (2005) 'The aerodynamic effects of wing-wing interaction in flapping insect wings.' J. Exp. Biol. 208, 3057-3092 Lehmann, F. O. (2008) 'When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings.' J. Exp. Biol. 211, 224–233. Lan, C. E. (1979) 'The unsteady quasi-vortex-lattice method with applications to animal propulsion.' J. Fluid Mech. 93, 747-765. Lin C. S., Hwu C. B. & Young W. B.(2005). 'The thrust and lift of an ornithopter’s membrane wings with simple flapping motion', Aerospace Science and Technology. 10, 111-119 Maxworthy, T. (1979) 'Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling.' J. Fluid Mech. 93, 47–63. Maxworthy T. (1981) 'The fluid dynamics of insect flight.' Annu. Rev. Fluid Mech. 13, 329-340 May, M. L. (1995) 'Dependence of flight behavior and heat production on air temperature in the Green Darner dragonfly Anax junius (Odonata:Aeshnidae).' J. Exp. Biol. 198, 2385-2392. Miller, L. & Peskin C. (2004) 'When vortices stick: an aerodynamic transition in tiny insect flight.' J. Exp. Biol. 207, 3073–88 Minotti, F. O. (2002) 'Unsteady two-dimensional theory of a flapping wing.' Phys. Rev. E 66:051907–17 Norberg, R. (1975) 'Hovering flight of the dragonfly, Aeschna juncea L., kinematics and aerodynamics.' In Swimming and Flying in Nature, vol. 2 (ed. T. Wu, C. Brokaw and C. Brennen), pp. 763-781. New York: Plenum Press. Ramamurti R & Sandberg W. C. (2002)' A three dimensional computational study of the aerodynamic mechanisms of insect flight.' J. Exp. Biol. 205, 1507–18 Rayner J. (1979a) 'A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal.' J. Fluid Mech. 91, 697-730 Rayner J. (1979b) 'A vortex theory of animal flight. Part 2. The forward flight of birds.' J. Fluid Mech. 91, 731-752 Ruppell G. (1989) 'Kinematic analysis of symmetrical flight maneuvres of odonata.' J. Exp. Biol. 144, 13–42 Ragazzo, C. G. & Tabak, E. G. (2007) 'On the force and torque on systems of rigid bodies: a remark on an integral formula due to Howe.' Phys. Fluids, 19, 057108. Reavis, M. A. & Luttges, M. W. (1988) 'Aerodynamic forces produced by a dragonfly.' AIAA J 88-0330, 1-13. Ruppell, G. (1989) 'Kinematic analysis of symmetrical flight manoeuvres of Odonata.' J. Exp. Biol. 144, 13-42. Ruppell, G. & Hilfert, D. (1993) 'The flight of the relict dragonfly Epiophlebia superstes (Selys) in comparison with that of modern Odonata (Anisozygoptera: Epiophlebiidae).' Odonatologica 22, 295-309. Rayner, J. M. V. (1979) 'A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal.' J. Fluid Mech. 91, 697-730. Savage S, Newman B. G. & Wong D. T. M. (1979) 'The role of vortices and unsteady effects during the hovering flight of dragonflies.' J. Exp. Biol. 83, 59–77 Sane, S. P. & Dickinson, M. H. (2001) 'The control of flight force by a flapping wing: Lift and drag production.' J. Exp. Biol. 204, 2607-2626. Sane, S. P. (2003) 'Review - The aerodynamics of insect flight.', J. Exp. Biol. 206, 4191-4208 Sane, S. P. & Dickinson, M. H. (2002) 'The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.' J. Exp. Biol. 205, 1087–1096. Smith, M., Wilkin, P. & Williams, M. (1996) 'The advantages of an unsteady panel method in modeling the aerodynamic forces on rigid flapping wings.' J. Exp. Biol. 199, 1073–1083. Srygley, R. B. & Thomas, A. L. R. (2002) 'Unconventional lift-generating mechanisms in free-flying butterflies.' Nature 420, 660–664. Somps C, & Luttges M. W. (1985) 'Dragonfly flight: novel uses of unsteady separated flows.'Science 228, 1326–28 Spedding, G. R. & Maxworthy, T. (1986) 'The generation of circulation and lift in a rigid two-dimensional fling.' J. Fluid Mech. 165, 247-272. Spedding G. R, Rosen M & Hedenstrom A. (2003) 'A family of vortex wakes generated by a thrust nightingale in free flight in a wind tunnel over its entire natural range of flight speeds.' J. Exp. Biol. 206, 2313–44 Sun, M. & Tang, J. (2002) 'Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.' J. Exp. Biol. 205, 55–70. Sun, M, & Lan S. (2004) 'A computational study of the aerodynamic forces and power requirements of dragonfly (aeschna juncea) hovering.' J. Exp. Biol. 207, 1887–901 Saharon, D. & Luttges, M. W. (1987) 'Three-dimensional flow produced by a pitching-plunging model dragonfly wing.' AIAA J. 87-0121, 1-17. Saharon, D. & Luttges, M. W. (1988) 'Visulaziation of unsteady separated flow produces by mechanically driven dragonfly wing kinematics model.' AIAA J. 88-0569, 1-23. Saharon, D. & Luttges, M. W. (1989) 'Dragonfly unsteady aerodynamics: The role of the wing phase relationship in controlling the produced flows ' AIAA J. 88-0832, 1-19. Saharon, D. & Luttges, M. W. (1989) 'The flight performance of a damselfly Ceriagrion melanurum Selys. ' J. Exp. Biol. 200, 1765-1779. Simmons, P. (1977) 'The neuronal control of dragon flight. II. Physiology.' J. Exp. Biol. 71, 141-155. Somps, C. & Luttges, M. (1985) 'Dragonfly flight: novel uses of unsteady separated flows.' Science 228, 1326-1329. Thomas, P. D. & Lombard, C. K. (1979) 'Geometric conservation law and its application to flow computations on moving grids.' AIAA J. 17, 1030–1037. Vogel S. (1996) 'Life in Moving Fluids.' Princeton, NJ: Princeton Univ. Wakeling J. M, Ellington C. P. (1997) 'Dragonfly flight ii: velocities, accelerations and kinematics of flapping flight.' J. Exp. Biol. 200, 557–82 Wang, Z. J. (2000a) 'Two dimensional mechanism for insect hovering.' Phys. Rev. Lett. 85, 2216–2219. Wang, Z. J. (2000b) 'Vortex shedding and frequency selection in flapping flight.' J. Fluid Mech. 410, 323–341. Wang Z. J. (2004) 'The role of drag in insect hovering.' J. Exp. Biol. 207, 4147–4155 Wang Z. J.(2005) 'Dissecting Insect Flight', Annu.Rev.Fluid Mech. 37, 183-210 Wang, Z. J., Birch, J. M. & Dickinson, M. H. (2004) 'Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs. robotic wing experiments.' J. Expl Biol. 207, 461–474. Wang, Z. J. & Russell, D. (2007) 'Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight.' Phys. Rev. Lett. 99, 148101. Weis-Fogh T & Jensen M. (1956) 'Biology and physics of locust flight. i. basic principles in insect flight. a critical review.' Proc. R. Soc. B. 239, 415–58 Weis-Fogh, T. (1967) 'Respiration and tracheal ventilation in locusts and other flying insects.' J. Exp. Biol. 47, 561-587. Weis-Fogh, T. (1973) 'Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production.' J. Exp. Biol. 59, 169-230. Wu, J. C. (1981) 'Theory for aerodynamic force and moment in viscous flows.' AIAA J. 19, 432–441. Wakeling, J. M. (1993) 'Dragonfly aerodynamics and unsteady mechanisms: a review.' Odonatologica 22, 319-334. Wakeling, J. M. & Ellington, C. P. (1997). 'Dragonfly Flight. II. Velocities, accelerations, and kinematics of flapping flight.' J. Exp. Biol. 200, 557-582. Wang, H., Zeng, L., Liu, H. & Chunyong, Y. (2003) 'Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies.' J. Exp. Biol. 206, 745-757. Micro Air Vehicles - Toward a New Dimension in Flight - James M. McMichael Program Manager Defense Advanced Research Projects Agency and Col. Michael S. Francis, USAF (Ret.) formerly of Defense Airborne Reconnaissance Office -- 8/7/97 謝政達 (2004) '運用PIV與PTV量測技術於單一渦漩生成之研究',國立臺灣大學應用力學研究所碩士論文(指導教授:朱錦洲)。 何明輝 (2004) '低雷諾數下拍撲翼氣動力特性之數值研究',國防大學中正理工學院/國防科學研究所博士論文(指導教授:戴昌賢、苗志銘) 黃啟銘 (2005) '仿生撲翼之受力與流場量測',國立臺灣大學應用力學研究所碩士論文(指導教授:朱錦洲、張建成)。 蘇效賢 (2006) '仿生懸停下撲翼機構之流場與受力量測',國立臺灣大學應用力學研究所碩士論文 (指導教授:朱錦洲、張建成)。 楊適壕 (2007) '多體力源理論及其應用',國立臺灣大學應用力學研究所博士論文(指導教授:張建成、朱錦洲)。 蔡長志 (2007) '仿生撲翼之二維流場與受力量測',國立臺灣大學應用力學研究所碩士論文(指導教授:朱錦洲、張建成)。 陳俊為 (2008) '仿生合攏-張開運動之雙翼受力與流場量測',國立臺灣大學應用力學研究所碩士論文(指導教授:朱錦洲、張建成)。 學蜘蛛人趴趴走-受大自然啟發的仿生科技原文(2007) Peter Forbes著,譯者:張雨青;遠流出版。 飛行的奧祕 (2006) 多爾頓(Stephen Dalton)著,譯者:蔡承志;貓頭鷹出版。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26150 | - |
| dc.description.abstract | 本論文主要以力元(源)理論方法,來探討仿生撲翼下流場結構與翼翅之間的受力關係,即所謂的非定常空氣動力學。了解昆蟲飛行之高升力機制,除可滿足人類對飛行的求知慾外,有助於微飛行器(MAVs)之發展。故多年來持續吸引著國內外學者進行探討。但一直到最近,學術界對於昆蟲飛行機制的探討仍停留在以非黏流之理論或準定常(Quasi-steady)分析非定常問題,透過實驗量測與數值計算結果搭配所獲得的流場結構來解讀各式昆蟲飛行的升力與推力機制,但這些方法之問題在於無法清楚得知整個流場與翅膀受力之間的關係,因此對於昆蟲飛行之高升力機制仍存在許多爭議性的解釋。1992年張建成教授提出一種診斷流場之力元理論,並於2008年與朱錦洲教授將此理論推展至多個物體流場之研究,對此問題提供一個理想的解決方案。
力元(源)理論法乃是引入一輔助勢流於Navier-Stokes方程式中,將其作內積並求體積分,進而求得整體壓力項對物體所造成的外力,其完整呈現物體本身運動所造成的力-加速度項、物體運動項,以及外部流場所影響的-表面渦度項以及整體流場渦度項。引出升阻力的概念,不但清楚區別各流場中的每一個流元(fluid element)對物體受力的貢獻,更清楚的分解出物體加速以及流場渦漩對物體所造成的影響。本文先探討二維簡化下蜻蜓與果蠅單一翅膀懸停拍翅之氣動力機制。結果顯示昆蟲拍翅過程中,相位角在對稱模式下有最大的渦度升力(環境渦度+表面渦度);但就平均總升力而言,在超前模式下達到最大值。雖然相位角在超前模式下失去部分環境渦度升力,卻大幅提升了加速度升力。此外吾人提出騎乘升力元素 “Riding on the lift-elements”之概念,此即果蠅懸停拍翅在回轉過程中獲得額外升力的機制。此說法對於探討非定常流場與翼翅加速之間的受力關係有著非常重要的幫助。由於生物運動之複雜性,本文更進一步剖析蜻蜓前後翅撲拍運動時所造成周圍複雜之流場與飛行時所需的升、推力關係。透過多體力元理論獲得雙翅交互作用下之非定常氣動力來源,包括間接非定常效應:前後翅膀本身加速度項與表面速度貢獻;以及直接非定常效應:流場中的渦度項與翅膀表面渦度貢獻。搭配渦度與環境渦度力元分佈圖瞭解蜻蜓如何透過改變前後翅膀平移相位角以獲得高升力與高推力,同時明確指出,流場渦度的融合對於前後翅膀撲拍受力之互助與互制機制,並提供完整且透徹的解釋。此成果為力元的分析在仿生流力應用上奠立了堅實的基礎,且提供該領域一嶄新之研究視野。 本論文組織安排如下:第一章闡述過去研究仿生主題之背景與目的,並做相關的文獻回顧。第二章介紹所使用的數值模擬程式(Fluent)架構與理論背景,以及引入力元理論法所需的使用者自訂函數,同時詳細說明動態網格法則。第三章介紹力元理論與多體力元理論。第四章為實驗方法與配置。第五章分析蜻蜓與果蠅懸停飛行下之氣動力機制。第六章剖析蜻蜓前後翅拍動交互作用下之氣動力機制。第七章為結論與未來展望。 | zh_TW |
| dc.description.abstract | Birds, insects, and fish are generally acknowledged as flying and swimming experts. The efficiency of flying and swimming that these animals perform is surpassing any artificial mechanisms. Recently, numerous and experimental works have been devoted to the study of aerodynamics of insect wings, but there still exit puzzling and unsatisfactory explanations about the high-lift mechanisms of the hovering motion even for two-dimensional flow. It is now unsteadiness that has been recognized as the cause of the lift of an insect in hovering motion. But it is difficult to solely identify the vortex wake with the generation of high lift, as there are other unsteady contributions to the lift in the hovering motion.
Some time ago, Chang (1992) proposed a diagnostic force theory to distinguish the contributions of individual fluid elements to hydrodynamic forces. The theory starts from the D’Alembert theorem that the incompressible potential flow predicts no force exerted on a body if the incident flow is a constant uniform stream. It is noteworthy that incompressible potential flow means that there is no single fluid element possessing nonzero vorticity or dilation. It is therefore considered that for incompressible flow, any fluid element with nonzero vorticity or dilation may be considered as a source of the hydrodynamic force. The force theory was recently extended to be applicable to flow about many bodies with applications to separated flow about bluff bodies (Chang, Yang & Chu, 2008). First, we revisit two simplified models of hovering motion for fruit fly and dragonfly from the perspective of force decomposition. The unsteady aerodynamics is analysed by examining the lift force and its four constituent components, including one from the vorticity within the flow, one from the surface vorticity, and two contributions credited to the motion of the insect wing. According to the phase difference in the models, a hovering motion can be classified into one of three types: symmetric, advanced and delayed rotations. It is shown that the symmetric rotation has the maximum vorticity lift (from volume and surface vorticity), but the optimal average lift is attained for an advanced rotation, which, compared to the symmetric rotation, increases the force contribution due to the unsteady surface motion at the expense of sacrificing contribution from the vorticity. By identifying the variations of the vorticity lift with flow characteristics, we may further explore the detailed mechanisms associated with the unsteady aerodynamics at different phases of hovering motion. For the different types of rotation, the insect wing shares the same mechanism of gaining lift when in the phase of driving with a fuller speed, but exhibits different mechanisms at turning from one phase of motion to another. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:01:26Z (GMT). No. of bitstreams: 1 ntu-98-D93543010-1.pdf: 16163154 bytes, checksum: 9867d8f3000acb72c5d8c4d3b400cb42 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iv 英文摘要 vi 目錄 viii 圖目錄 xiii 表目錄 xviii 1. 導論 1 1.1. 引言 1 1.2. 仿生歷史進展 6 1.3. 仿生力學之數值與實驗進展 8 1.4. 非定常空氣動力學 15 1.4.1 Wagner效應 16 1.4.2. Clap and Fling 16 1.4.3. 不失速機制 18 1.4.4. 旋轉升力 21 1.4.5. 尾跡捕獲機制 23 1.5. 力元理論 25 1.6. 全文概述 27 2. 控制方程式與數值方法 31 2.1. 簡介 31 2.2. 網格的產生 31 2.2.1. 網格產生時間 32 2.2.2. 數值擴散 33 2.2.3. 網格品質 33 2.3. 控制方程式 36 2.3.1. 質量守恆方程式 36 2.3.2. 動量守恆方程式 37 2.4. 數值方法 39 2.4.1. 分離求解器 40 2.4.2. 空間離散 40 2.4.3. 時間離散 45 2.4.4. 壓力-速度耦合關係的處理 47 2.5. UDF介紹 54 2.5.1. 網格資料結構 55 2.5.2. 解釋和編譯 58 2.5.3. 使用DEFINE巨集與UDF之定義 59 2.5.4. 求解器的資料連結 66 2.5.5. 使用者自訂標量(User Defined Scalar & Memory) 67 2.5.6. UDF的執行流程 68 2.6.動態網格介紹 69 2.6.1. 動態網格技術 71 2.6.2. 動態網格原理 74 2.6.3. 動態網格方法 75 2.6.4. 仿生撲翼之動態網格應用 75 3. 力元理論 77 3.1. 前言 77 3.2. 輔助勢流 78 3.3. 力元理論 79 3.4. 多體力元理論-輔助勢流 84 3.5. 多體力元理論 86 4. 實驗設備與方法 93 4.1. 無因次參數 93 4.1.1. 雷諾數 94 4.1.2. 約化頻率 95 4.1.3. 史撤賀數 95 4.1.4. 展弦比 96 4.1.5. 轉動慣量 97 4.1.6. 平均升力係數 97 4.2. 實驗方法 99 4.2.1.實驗設備 99 4.2.2.受力量測系統 100 4.2.3.實驗步驟 102 4.2.4.實驗分析 102 5. 果蠅與蜻蜓懸停高升力機制 104 5.1. 前言 104 5.2. 文獻探討 104 5.2.1. 爭議性問題 104 5.3. 力元理論之應用 106 5.3.1. 數值結果驗證 106 5.3.2. 運動參數 108 5.4. 物理參數之探討 108 5.4.1. 相位角 109 5.4.2. 雷諾數. 117 5.4.3. 旋轉中心. 119 5.5. 蜻蜓懸停高升力機制 119 5.5.1. 相位角 120 5.5.2. 雷諾數. 128 5.5.3. 幾何形狀. 129 5.6. 結論 132 6. 蜻蜓前後翅拍動之氣動力機制 136 6.1. 前言 136 6.2. 文獻探討 136 6.2.1. 爭議性問題 139 6.3. 力元理論之應用 140 6.3.1. 輔助勢流 141 6.3.2. 數值結果驗證 142 6.3.3. 運動參數 143 6.4. 平移相位角之探討 145 6.4.1. 相位角 145 6.4.2. 平行模式 150 6.4.3. 相位角差90度模式(+90) 154 6.4.4. 反相模式 161 6.4.5. 相位角差270度模式(-90) 164 6.4.6. 總結 168 6.5. 攻角相位角之影響 170 6.5.1. 相位角 171 6.5.2. 平行模式 173 6.5.3. 相位角差90度模式(+90) 177 6.5.4. 反相模式 180 6.5.5. 相位角差270度模式(-90) 183 6.5.6. 總結 186 7. 結論與展望 189 7.1. 結論. 189 7.2. 未來展望. 192 8. 參考文獻 194 附錄 208 | |
| dc.language.iso | zh-TW | |
| dc.subject | 器 | zh_TW |
| dc.subject | 仿生撲翼 | zh_TW |
| dc.subject | 學 | zh_TW |
| dc.subject | 空氣動力 | zh_TW |
| dc.subject | 微飛行 | zh_TW |
| dc.subject | 元理 | zh_TW |
| dc.subject | 多體力 | zh_TW |
| dc.subject | 元理 | zh_TW |
| dc.subject | 非定常 | zh_TW |
| dc.subject | MAVs | en |
| dc.subject | Force element theory | en |
| dc.subject | two wings flapping | en |
| dc.subject | bionics | en |
| dc.subject | unsteady aerodynamics | en |
| dc.subject | many-body force theory | en |
| dc.title | 以力元理論之觀點剖析昆蟲飛行的氣動力機制 | zh_TW |
| dc.title | The Mechanisms of Insect Flight from the Perspective of a Force Element Theory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 張建成 | |
| dc.contributor.oralexamcommittee | 張家歐,陳瑞琳,郭志禹,蘇正瑜,雷聲遠,王繼宗,楊適壕 | |
| dc.subject.keyword | 力,元理,論,多體力,元理,論,仿生撲翼,非定常,空氣動力,學,微飛行,器, | zh_TW |
| dc.subject.keyword | Force element theory,many-body force theory,unsteady aerodynamics,bionics,two wings flapping,MAVs, | en |
| dc.relation.page | 303 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-03-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 15.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
