請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26143
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉家瑄 | |
dc.contributor.author | Chih-Chin Tsai | en |
dc.contributor.author | 蔡志勤 | zh_TW |
dc.date.accessioned | 2021-06-08T07:01:16Z | - |
dc.date.copyright | 2009-05-12 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-04-30 | |
dc.identifier.citation | Aki, K., and P. G. Richards, 1980, Quantitative seismology: Theory and Methods: W. H. Freeman.
Andreassen, K., P. Hart, and A. Grantz, 1995, Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea: J. Geophys. Res., 100, 12659-12673. Bangs, N.L.B., D. S. Sawyer, and X. Golovchenko, 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction: Geology, 21, 905-908. Birch, F., 1960, The velocity of compressional waves in rocks to 10 kilobars, part1: J. Geophys Res. 65, 1083-1103. Bortfeld, R., 1961, Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves: Geophys. Prosp., 9, 485-503. Castagna, J.P., and M.M. Backus, 1993, AVO analysis-tutorial and review, in Castagna, J. and Backus, M.M., eds., Offset-dependent reflectivity. Theory and practice of AVO analysis: Soc. Expl. Geophys., 3-37. Castagna, J. P., H. W. Swan, and D.J. Foster, 1998, Framework for AVO gradient and intercept interpretation: Geophysics, 63, 948-956. Chand, S., T. A. Minshull, G. Davide, and J. M. Carcione, 2004, Elastic velocity models for gas-hydrate-bearing sediments-A comparison: Geophys. J. Int., 159(2), 573– 590. Chapman, N.R., J.F. Gettrust, R. Walia, D. Hannay, G.D. Spence, W.T. Wood, and R.D. Hyndman, 2002, High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off Western CanadaGeophysics: Geophysics, 67, 1038-1047. Chi, W. C., D. L. Reed, C. S. Liu, and N. Lundberg, 1998, Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone: Terrestrial, Atmosphere and Oceanic Sciences, 9, 779-794. Collett, T. S., 1998, Well logevaluation of gas hydrate saturations: Transactions of the Society of Professional Well Log Analysts 39th Annual Logging Symposium, Paper MM. Collett, T. S., 2001, A review of well-log analysis technique used to assess gas-hdrate-bearing reservoirs: Natural Gas Hydrates Occurrence, Distribution, and Detection, 189-210. Dai, J., H. Xu, F. Snyder, and N.Dutta, 2004, Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico: The Leading Edge, 23, 16. Dai, J., F. Snyder, D. Gillespie, A. Koesoemadinata, and N.Dutta , 2008, Exploration for gas hydrates in the deepwater northern Gulf of Mexico: partⅡ. A seismic approach based on geologic model, inversion and rock physics principle: Mar. Petr. Geol, 25, 845-859. David, E. E., and H. Villinger, 1992, Tectonics and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge, in E.E. Davis, M.J. Mottl, and A.T. Fisher: Proceedings of the Ocean Drill. Program Initial Rep., 139, 9-41. de Hoop, M. V., and S. Brandsberg-Dahl, 2000, Maslov asymptotic extension of generalized Radon transform inversion in anistropic elastic media: a least squares approach: Inverse problems 16, 519–562. Deng, H., P. Yan, H. Liu , and W. Luo, 2006, Seismic data processing and the characterization of a gas hydrate bearing zone offshore of southwestern Taiwan: Terr. Atmos. Ocean .Sci., 17, 781-797. Dickens, G. R., 2001, Modeling the global carbon cycle with a gas hydrate capacitor:Significance for the latest Paleocene thermal maximum, in Paull, C.K. and W.P. Dillon, eds., Natural Gas Hydrates: Occurrence, Distribution, and Detection: American Geophysical Union Geophysical Monograph, 124, 19-38. Diebold, J. B., P. L. Stoffa, P. Buhl, and M. Truchan , 1981, Venezuela Basin Crustal Structure: J. Geophys. Res., 86, 7901-7923 Diebold, J. B., and P. L. Stoffa, 1981, The traveltime equation, τ-p mapping, and inversion of common midpoint data: Geophysics, 46, 238-254. Dobrynin, V. M., Y. P. Korotajev, and D.V. Plyuschev, 1981, Gas hydrates--a possible energy resource, in Meyer, R.F., and Olson, J.C., eds., Long-term energy resources: Pitman, 727-729. Domenico, S. N., 1976, Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir: Geophysics, 41, 882–894. Domenico, S. N., 1977, Elastic properties of unconsolidated porous sand reservoirs: Geophysics, 42, 1339–1368 Dvorkin, J., G. Mavko , and A. Nur, 1991, The effect of cementation on the elastic properties of granular material: Mech. of Mater., 12, 207-217. Dvorkin, J., A. Nur, and H. Yin, 1994, Effective properties of cemented granular material: Mechanics of Materials, 18, 351-366. Dvorkin, J., and A. Nur, 1998a, Time-average equation revisited: Geophysics, 63, 460-464. Dvorkin, J., and A. Nur, 1998b, Acoustic signatures of patchy saturation: Int. J. Solids Structures, 35, 4803-4810. Dvorkin, J., M. Prasad, A. Sakai , and D. Lavoie, 1999b, Elasticity of Marine Sediments: Rock Physics Modeling: Geophysical Research Letters, 26, 1781-1784. Ecker, C., J. Dvorkin , and A. Nur, 2000, Estimating the amount of hydrate and free gas free gas from surface seismic: Geophysics 65, 565-573. Ecker, C., D. Lumlet, J. Dvorkin, and A. Nur, 1996, Structure of hydrated sediments from seismic and rock physics: 2nd International Conference on Natural Gas Hydrates, PROGEP-NGH, Toulouse, 491-498. Ecker, C., 1998, Seismic characterization of methane hydrate structures: Ph.D. thesis, Stanford University. Font, Y., H. Kao, C.S. Liu, and L.Y. Chiao, 2003, A comprehensive 3D seismic velocity model for the eastern Taiwan-southernmost Ryukyu regions: Terrestrial, Atmosphere and Oceanic Sciences, 14(2), 159-182. Geertsma, J., 1961, Velocity-log interpretation: The effect of rock bulk compressibility: Soc. Pet. Eng. J., 1, 235–248. Gornitz, V., and I. Fung, 1994, Potential distribution of methane hydrates in the world’s oceans: Global Biogeochemical Cycles, 8, 335-347. Haq, B. U., 2000, Climatic impact of natural gas hydrate, in: M.D. Max,editor, Natural Gas Hydrate in Oceanic and Permafrost Environments: Kluwer Academic Publishers, 137-148. Harding, T. P., and J. P. Lowell, 1979, Structural styles, their plate tectonic habitats, and hydrocarbon traps in petroleum provinces: Am. Assoc. Pet. Geol. Bull. 63, 1016-1058. Hato, M., T. Inamori, A. Bahar, and T. Matsuoka, 2004, Application of AVO Analysis to Seismic Data for Detection of Gas below Methane Hydrate Stability Zone in Nankai Trough Area: Resource Geology, 54, 105-114. Helgerud, M. B., J. Dvorkin, A. Nur, A. Sakai, and T. S. Collett, 1999, Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling: Geophy. Res. Lett., 26, 2021-2024. Holbrook, W. S., H. Hoskins, W. T. Wood, R. A. Stephen, D. Lizzaralde, and Leg 164 Science Party, 1996, Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling: Science, 273, 1840-1843. Holbrook, W. S., 2001, Seismic Studies of the Blake Ridge: Implication for Hydrate Distribution, Methane Expulsion, and Free Gas Dynamics, in C. K. Paull, W. P. Dillon, eds., Natural Gas hydrates: Occurrence, Distribution and Detection: Am. Geophys. Un. Monogr., 124, 235-256. Hole, J. A., 1992, Nonlinear high-resolution three-dimensional seismic travel time tomography: J. Geophys. Res., 97, 6553-6562. Hovland, M., and O. T. Gudmestad, 2001, Potential influence of gas hydrates on seabed installations, in C. K. Paull, W. P. Dillon, eds., Natural Gas hydrates: Occurrence, Distribution and Detection: Am. Geophys. Un. Monogr., 124, 307-315. Hyndman, R. D., and G. D. Spence, 1992, A seismic study of methane hydrate marine bottom simulating reflectors: J. Geophys. Res., 97, 6683-6698. Hyndman, R. D., G. F. Moore, and K. Moran, 1993, Velocity, porosity and pore-fluid loss from the Nankai subduction zone accretionary prism, in I. A., Hill, et al.: Proc. Ocean Drill. Program Sci. Results, 131, 211-220. Jarrard, R. D., M. E. MacKay, G. K. Westbrook, and E. J. Screaton, 1995, Log-based porosity of ODP Sites on the Cascadia accretionary prism, in B., Carson, G. K., Westbrook, R. J., Musgrave, and I. Suess: Proc. Ocean Drill. Program Sci. Results, 146, 313-335. Jianchun, D., H. Xu , F. Snyder, and N. Dutta, 2004, Detection and estimation of gas hydrates using rock physics and seismic inversion: The leading edge, 23, 60-66. Katzman, R., W.S. Holbrook, and C.K. Paull, 1994, Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge: J. Geophys. Res., 99, 17975-17995. Keary P., and M. Brooks, 1984, An introduction to Geophysical Exploration: Blackwell Scientific Publications, Oxford. Koefoed, O., 1955, On the effect of Poisson.s ratios of rock strata on the reflection coefficients of plane waves: Geophys. Prosp., 3, 381-387. Korenaga, J., W.S. Holbrook, S.C. Singh, and T.A. Minshull, 1997, Natural gas hydrates on the Southeast U.S. margin: Constraints from full-waveform and travel time inversion of wide-angle seismic data: J. Geophys. Res., 102, 15345-15365. Kumar, D., M. K. Sen, and N. L. Bangs, 2007, Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data: J. Geophys. Res., 112, B12306, doi:10.1029/2007JB004993. Kvenvolden, K.A., 1988, Methane hydrate – a major reservoir of carbon in the shallow goesphere?: Chemical Geology, 71, 41-45. Kvenvolden, K.A., 1993, Gas hydrates as a potential energy resource--a review of their methane content, in Howerll, D.G., eds., The future of energy gases: U.S. Geological Survey Professional Paper 1570, 555-561. Kvenvolden, K.A., and T.D. Lorenson, 2001, The global occurrence of natural gas hydrates, in Charles K. Paull and William P. Dillon, eds., Natural Gas Hydrates- Occurrence Distribution and Detection: Am. Geophys. Un. Monogr., 124, 1-18. Lee, M.W., and T.S. Collett, 2001, Elastic properties of gas hydrate-bearing sediments: Geophysics, 66, 763-771. Lee, M. W., and T. S. Collett, 2006, Gas hydrate and free gas saturations estimated from velocity logs on Hydrate Ridge, offshore Oregon: USA, Proc. Ocean Drill. Program Sci. Results, 204. (Available at http://www-odp.tamu.edu/publications/204_SR/VOLUME/CHAPTERS/103.PDF) Lee, M. W., D. R. Hutchinson, W. P. Dillon, J. J. Miller, W. F. Agena, and B. A. Swift, 1993, Method of estimating the amount of in situ gas hydrate in deep marine sediments: Mar. Pet. Geol., 10, 493-506. Lee, M. W., D. R. Hutchinson, T. S. Collett, and W. P. Dillon, 1996, Seismic velocities for hydrate-bearing sediments using weighted equation: J. Geophy. Res., 101, 20347-20358. Lee, M.W., D. R. Hutchinson, W. P. Dillon, J. J. Agena, and B.A. Swift, 1996, Seismic velocities for hydrate-bearing sediments from weighted equation: J. Geophys. Res., 101, 20347-20358. Liu, Z., and N. Bleistein, 1995, Migration velocity analysis: Theory and an iterative algorithm: Geophysics, 60, 142–153. Lu, S., and G. A. McMechan, 2002, Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data: Geophysics, 67, 582– 593. Lundberg, N., and D. Reed, 1992, Early development of thrust ramps at the deformation front of the submarinee Taiwan accretionary prism: Geological Society of America, 1992 annual meeting. MacDonald, G.J., 1990, The future of methane as an energy resource: Annual Review of Energy, 15, 53-83. Matsumoto, R., 1995, Crystal structure and physical properties of methane hydrate: PETROTEC, 18, 27-32. Matti, J. C., and D. M. Morton, 1993, Paleogeographic evolution of the San Andreas Fault in southern California: A reconstruction based on a new cross-fault correlation, in R.E. Powell, R.J. Weldon II, and J.C. Matti, eds., The San Andreas Fault System: Displacement, palinspastic reconstruction, and geologic evolution: Mem. Geol. Soc. Am. 178, 107–159. Mavko, G,, and T. Mukerji, 1998, Bounds on low-frequency seismic velocities in partially saturated rocks: Geophysics, 63, 918-924. McIver, R.D., 1981, Gas hydrates, in Meyer, R.F., and Olson, J.C., eds., Long-term energy resources: Pitman, 713-726. Meyer, R.F., 1981, Speculations on oil and gas resources in small fields and unconventional deposits, in Meyer, R.F., and Olson, J.C., eds., Long-term energy resources: Pitman, 49-72. Mienert, J., and J. Posewang, 1999, Evidence of shallow and deep water gas hydrate destabilizations in North Atlantic polar continental margin sediments: Geo-Mar. Lett., 19, 143-149. Miller, J. J., M. W. Lee, and R. von Huene, 1991, An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru: AAPG Bull., 75, 910-924. Minshull, T. A., S. C. Singh, and G. K. Westbrook, 1994, Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from a full waveform inversion: Journal of Geophysical Research, 99, 4715-4734. Müller, C., C. Bönnemann, and S. Neben, 2007, AVO study of a gas-hydrate deposit, offshore Costa Rica: Geophysical Prospecting, 55, 719-735. Nobes, D. C., H. Villinger, E. E. Davis, and L. K. Law, 1986, Estimation of marine sediment bulk physical properties at depth from seafloor geophysical measurements: J. Geophys. Res., 91, 14033-14043. Nur, A., G. Mavko, J. Dvorkin, and D. Galmudi, 1998, Critical porosity: A key to relating physical properties to porosity in rocks: The Leading Edge, 17, 357-362. Ostrander, W.J., 1984, Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence: Geophysics, 49, 1637-1648. Paull, C.K., W. III. Ussler, and W. P. Dillon, 2000, Potential role of gas hydrate decomposition in gernerating submarine slope failures, In M.D. Max, eds., Natural Gas Hydrate in Oceanic and Permafrost Environments: Kluwer, 149-156. Pearson, C. F., P. M. Halleck, P. L. McGuire, R. Hermes, and M. Mathews, 1983, Natural gas hydrate: A review of in situ properties: J. Phys. Chem., 87, 4180-4185. Pearson, C. F., J. Murphy, and R. Hermes, 1986, Acoustic and resistivity measurements on rock samples containing hydrates: Laboratory analogues to natural gas hydrate deposits: J. Geophys. Res., 91, 14132-14138. Pecher, I., C. R. Ranero, R. von Huene, R. Minchull, and T. A. Shingh, 1998, The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin: Geophys. J. Int., 133, 219-229. Prensky, S.E., 1995, A review of gas hydrates and formation evaluation of hydrate-bearing reservoirs: 1995 meeting of the Society of Professional Well Log Analysts. Reed, D.L., N. Lundberg, C.S. Liu, and B.Y. Kuo, 1992, Structural relations along the margins of the offshore Taiwan accretionary wedge; implication for accretion and crustal kinematics: Acta Geologica Taiwanica, 30, 105-122. Richards, P.G., and C.W. Frasier, 1976, Scattering of elastic waves from depth-dependent inhomogeneties: Geophysics, 41, 441-458. Riedel, M., and F. Theilen, 2001, AVO Investigations of Shallow Marine Sediments: Geophysical Prospecting, 49, 198-213. Schnurle, P., and D. H. Hsiuan, 2000, Synthetic wide-angle seismic data in gas hydrate and free gas bearing sediments: A Virtual OBS case study: Petrol. Geol. Of Taiwan, 34, 1-32. Schnurle, P., D. H. Hsiuan, and C.S. Liu, 1999, Constrains on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan: Petrol. Geol. of Taiwan, 33, 21-42. Scholl, D. W., and P. E. Hart, 1993, Velocity and amplitude structures on seismic reflection profiles-possible massive gas hydrate deposits and underlying gas accumulations in the Bering Sea Basin: USGS Professional Paper, 1570, 331-351. Shipley, T. H., M. H. Huston, R. T. Buffler, F. J. Shaub, K. J. McMillen, J. W. Ladd, and J. L. Worzel, 1979, Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises: AAPG Bull., 63, 2204-2213. Shuey, R.T., 1985, A simplification of the Zoeppritz equations.: Geophysics, 50, 609-614. Shyu, C. T., S. K. Hsu, and C. S. Liu, 1998, Heat flows off southwest Taiwan: Measurements over Mud Diapirs and estimates from bottom simulating reflectors: Terrestrial, Atmosphere and Oceanic Sciences, 9(4), 795-812. Smith, G.C., and P.M. Gidlow, 1987, Weighted stacking for rock property estimation and detection of gas: Geophys. Prosp., 35, 993-1014. Stoffa, P. L., J. B. Diebold, and P. Buhl, 1982, Velocity analysis for wide aperture seismic data: Geophysicial Preospecting, 30, 25-57. Taner, M. T., and F. Koehler, 1969, Velocity spectra-digital computer derivation and applications of velocity functions: Geophysics, 34, 859-881. Tinavella, U., and F. Accaino, 2000, Compressional velocity and Poisson’s Ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Island, Antartica): Marine Geology, 164, 13-27. Tréhu, A. M., and E. R. Flueh, 2001, Estimating the thickness of the free gas zone beneath Hydrate Ridge, Oregon continental margin, from seismic velocities and attenuation: J. Geophys. Res. 106 , 2035. Trofimuk, A. A., N. V. Cherskii, and V. P. Tsaryov, 1977, The role of continental glaciation and hydrate formation on petroleum occurrence, in Meyer, R.F., eds., The future supply of nature-made petroleum and gas: Pergamon Press, 919-926. Tsai C. C., R. D. Catchings, M. R.Goldman, M. J. Rymer, P. Schnurle, and H. W. Chen, 2008, High-resolution seismic images and seismic velocity of the San Andreas Fault zone at Burro Flats, southern California: Bull. Seismol. Soc. Am., 98, 2948-2961. Wang, X., S. Wu, N. Xu, and G. Zhang, 2006, Estimation of gas hydrate saturation using constrained sparse spike inversion: case study from the northern South China Sea: Terr. Atmos. Ocean. Sci., 17, 799-813. Warner, M., 1990, Absolute reflection coefficients from deep seimic reflections: Tectonophysics, 173, 15-23. Winters,W. J., W. F. Waite, D. H. Mason, and L. Y. Gilbert, 2006, Physical properties of repressurized sediment from Hydrate Ridge: Proc. Ocean Drill. Program Sci. Results, 204. (Available at http://www-odp.tamu.edu/publications/204_SR/ VOLUME/ CHAPTERS/119.PDF) Wood, A. B., 1941, A text book of sound: Macmillian. Wood, A. B., 1955, A textbook of sound: The MacMillan Co. Wood, W. T., P. L. Stoffa, and T. H. Shipley, 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: J. Geophys. Res., 99, 9681-9695. Wyllie, M. R. J., A. R. Gregory, and L. W. Gardner, 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, 21(1), 41-70. Yilmaz, Ö., 1987, Seismic data processing: Investigations in Geophysics, No. 2: Soc. Explor. Geophys., Tulsa. Yuan, T., R. D. Hyndman, G. D. Spence, and B. Desmos, 1996, Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulation reflector on the northern Cascadia continental slope: J. Geophys. Res., 101, 13665-13671. Yun, T. S., F. M. Francisca, J. C. Santamarina, and C. Ruppel, 2005, Compressional and shear wave velocities in uncemented sediment containing gas hydrate: Geophys. Res. Lett., 32, L10609, doi:10.1029/2005GL022607. Yule, J. D., T. E. Fumal, S. McGill, and G. Seitz, 2001, Active tectonics and paleoseismic record of the San Andreas fault, Wrightwood to Indio: working toward a forecast for the next 'Big Event', in Geologic Excursions in the California Deserts and adjacent transverse ranges: Geological Society of America Cordilleran Section and American Association of Petroleum Geologist, Pacific Section. Society for Sedimentary Geology Pacific Section. Fullerton, 91-126. Zelt, C. A., and R. B. Smith, 1992, Seismic travel time inversion for 2-D crustal velocity: Geophys. J. Int., 108, 16-34. Zoeppritz, K., 1919, Erdbebenwellen VIII B, On the reflection and penetration of seismic waves through unstable layers: Goettinger Nachr., 66-84. 王天楷 (2008) 台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(1/4)。海底地震儀對天然氣水合物研究的應用。經濟部中央地質調查所報告第97-28-B號,共51 頁。 吳佩芬(1999)天然氣水合物新能源之角色及概論。海洋新能源探勘發展專題研討會論文集,共13頁。 沈佳蕙 (1999) 以波線追跡研究西北線型地震帶之速度構造。國立中央大學地球物理所碩士論文。 李昭興 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查-海底地震儀對天然氣水合物研究的應用,經濟部中央地質調查所工作成果報告,共107頁。 林朝宗、鐘三雄、羅聖宗、李曉芬、王詠絢、費立沅(2002)天然氣水合物的特性與調查研究規劃策略。二十一世紀海洋新能源—天然氣水合物研討會論文集,共38頁。 林曉武(2004)台灣西南海域天然氣水合物賦存區地質調查研究-海域地質調查與地球化學探勘(1/4)。硫酸鹽還原在天然氣水合物賦存區之應用與調查及活塞岩心標本採集系統之研究及製作。經濟部中央地質調查所報告第93-25-E號,共48 頁。 林殿順 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查-含天然氣水合物地層的構造與沉積特徵研究,經濟部中央地質調查所工作成果報告,共79頁。 徐春田 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查-天然氣水合物賦存區之地熱調查,經濟部中央地質調查所工作成果報告,共55頁。 張成華 (1993) 台灣西南部海域之泥貫入體研究。國立臺灣大學海洋研究所碩士論文。 陳格忠 (2003) 台灣西南海域天然氣水合物分布之探討。國立台灣大學海洋研究所碩士論文。 陳格忠、劉家瑄(2002)台灣西南海域天然氣水合物分布初估。第九屆台灣地區地球物理研討會論文集,共6頁。 黃衍騮 (1993) 台灣西南部海域之地質構造分析。國立臺灣大學地質學研究所碩士論文。 黃寶賢 (1998) 比較反涉及折射震波速度分析方法並探討台灣西南海域沈積物震波速度特性。國立台灣大學海洋研究所碩士論文。 黃奇瑜(2005)台灣西南海域天然氣水合物賦存區地質調查研究-海域地質調查與地球化學探勘(2/4)。台灣西南海域天然氣水合物潛能區的地質學特徵。經濟部中央地質調查所報告第94-26-A號,共74 頁。 蒲新杰 (2003) 利用線形地震網探討台灣南部主要構造。國立中央大學地球物理所碩士論文。 劉家瑄、徐春田、史菲利、傅式齊、宣大衡 (1999) 台灣西南海域天然氣水合物潛存之分析。海域新資源探勘開發專題研討會論文集,共15頁。 劉家瑄、徐春田、史菲利、傅式齊、宣大衡(1999)台灣西南海域天然氣水合物潛存之分析。海洋新資源探勘開發專題研討會論文集,共14頁。 劉家瑄 (2002) 台灣西南海域天然氣水合物分布及震測特徵。行政院國家科學委員會/經濟部能源委員會能源科技學術合作研究計畫成果報告,NSC91-ET-7-002-007-ET。 劉家瑄 (2003) 從震測速度分析及沈積物物理特性探討甲烷水合物之含量。行政院國家科學委員會/經濟部能源委員會能源科技學術合作研究計畫成果報告,NSC92-ET-7-002-006-ET。 劉家瑄 (2006) 台灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查(3/4)-反射震測與海床聲納迴聲剖面調查研究,經濟部中央地質調查所工作成果報告,共94頁。 劉家瑄 (2007a) 台灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查-反射震測與海床聲納迴聲剖面調查研究,經濟部中央地質調查所工作成果報告,共76頁。 劉家瑄 (2007b) 台灣西南海域賦存區地質調查研究-地球物理調查,經濟部中央地質調查所工作成果報告,共176頁。 鐘三雄、張碩芳 (2001) 甲烷氣水包合物的回顧與展望。地質彙刊,十四號,共47頁,中央地質調查所。 鐘三雄、劉家瑄、劉紹勇、賴國榮、陳之馨、陳格忠 (2002) 海底仿擬反射資料庫建置,二十一世紀海洋新能源研討會。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26143 | - |
dc.description.abstract | 在台灣西南海域所蒐集到的震測資料發現有廣泛分佈的海底仿擬反射(BSR),顯示蘊藏豐富之天然氣水合物與游離氣,一旦未來天然氣水合物的開發技術成熟,極可能成為我國主要的能源來源。因此對台灣西南海域天然氣水合物的潛能評估,是需要積極進行的工作。
本研究將地層中出現天然氣水合物地球物理特徵之區域,利用震波速度與振幅隨支距(AVO)分析技術進行其飽和度之估算。由於震波速度對於飽和度之估算極具重要性,因此,獲得正確的震波速度資訊為瞭解沈積物特性之關鍵。為了提升速度計算之精確性,我們利用疊前深度移位技術與疊代移位速度分析方法,在台灣西南外海出現BSRs訊號處,分析所蒐集到之長支距反射資料。研究結果顯示在封閉構造上之BSR處,其上下層速度異常值變化非常大,主要由於其上方蘊藏天然氣水合物造成地層速度值增加,其值增加至1750-2000公尺/秒之範圍,主要分佈在1900公尺/秒附近,相對地,下方由於出現游離氣之分佈使得速度值明顯下降,形成低速帶。此外,由於BSR下方分佈游離氣,造成P波速度與泊松比較上覆沈積物低,AVO屬性分析結果顯示台灣西南外海之BSR屬於第三類型沈積界面(Class-3),亦即天然氣水合物與游離氣分別存在於BSR之上、下地層中。在飽和度分析中,地層中速度異常值明顯處,其天然氣水合物之飽和度可高達30 %。藉由本研究之成果可提供台灣西南海域天然氣水合物在空間分佈與性質研究上相當寶貴之經驗與資訊,對未來鑽井之井位選擇亦有所助益。 | zh_TW |
dc.description.abstract | Marine seismic reflection data collected from offshore southwestern Taiwan show that prominent seismic bottom simulating reflectors (BSRs) are presented that indicate the existence of gas hydrate in the seafloor sediment with free gas zone underneath. It is of great interest to estimate the energy resource potential of the gas hydrate in this region. This study intends to derive accurate velocity values and performed amplitude versus offset analysis techniques to estimate the gas hydrate and free gas saturations in the sub-strata where gas hydrate present. The saturation estimates are extremely sensitive to the input velocity values, therefore, accurate velocity determination is crucial for correct reservoir characterization. In order to obtain good velocity values, we apply pre-stack depth migration method to analyze large-offset seismic reflection data where prominent BSRs are observed through the use of iterative migration velocity analysis (residual moveout method). The resultant interval velocity model shows large lateral velocity variations in the hydrate layer and low velocity zones associated with free gas at the location of structural traps. Velocity structures derived from pre-stack depth migration show that the hydrate-bearing sediments generally have velocity ranges from 1750 to 2000 m/s, with most values around 1900 m/s. Low velocity zones observed beneath the gas hydrate bearing sediments clearly indicate the presence of free gas below. For the case of gas-saturated sediment below the methane hydrate layer, Poisson’s ratio and P-wave velocity of the gas-saturated sediment should be lower than the methane hydrate layer, producing Class-3 AVO response. All the seismic characters described above suggest that a gas hydrate layer exists together with a free gas layer below it along strong BSRs in the area offshore southwestern Taiwan, and the saturation of gas hydrate could reach 30% where velocity anomalies are high. In study areas where no well data are available and lithologic heterogeneities are poorly understood, implementing a seismic-based technique like the one presented here can provide valuable pre-drill information for site selection and for planning future characterization studies of gas hydrate-bearing sediments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:01:16Z (GMT). No. of bitstreams: 1 ntu-98-F90241304-1.pdf: 9869352 bytes, checksum: 8d7ef6d4f3beb8383314afa348805b67 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
致謝 I 摘要 II 英文摘要 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 前言 1 1.1 天然氣水合物 3 1.2 海底仿擬反射 6 1.2.1 BSR形成機制與其物理性質 6 1.3 研究動機與目的 11 第二章 震測資料處理與分析 17 2.1 研究區域背景 17 2.1.1 地質背景 17 2.1.2 台灣西南海域天然氣水合物研究之回顧 18 2.2 資料收集與處理 23 2.3 速度分析 25 2.3.1 疊代移位速度分析處理技術 27 2.3.2 Kirchhoff疊前移位深度處理 31 2.3.3 資料處理 32 2.3.4 速度剖面 34 2.3.4.1 EW9509-33測線 34 2.3.4.2 EW9509-35測線 35 2.3.4.3 EW9509-46測線 36 第三章 振幅隨支距變化之分析 53 3.1 AVO處理 55 3.1.1. 幾何擴散修正 55 3.1.2. 聲源與接收器陣列之方向性修正 55 3.1.3. 反射係數 55 3.2 振幅隨支距變化之反射率 56 3.2.1. Koefoed定則與含氣砂岩屬性之分類 60 3.2.2. BSR之AVO特徵 62 3.2.3. AVO屬性分析 64 3.2.3.1. EW9509-33測線 65 3.2.3.2. EW9509-35測線 68 3.2.3.3. EW9509-46測線 69 第四章 天然氣水合物蘊藏量之估算 87 4.1 含天然氣水合物與游離氣之岩石物理模型 89 4.1.1 Wood equation岩石物理模型 92 4.1.2 Weighted equation岩石物理模型 93 4.1.2.1 P波波速與彈性係數間之關係: 94 4.1.2.2 S波與彈性係數間之關係: 94 4.1.3 Effective medium model岩石物理模型 95 4.1.2.1 模型一:天然氣水合物成為沈積物中孔隙水的一部份 96 4.1.2.2 模型二:天然氣水合物成為沈積物框架的一部份 97 4.1.2.3 模型三:天然氣水合物膠結在顆粒之間 98 4.1.4 含游離氣之岩石物理性質 100 4.2 利用反射係數推估天然氣水合物的濃度 102 4.3 利用速度的資訊推估天然氣水合物的飽和度 106 4.3.1. 台灣西南外海速度資訊與天然氣水合物飽和度之關係 106 4.4 台灣西南外海天然氣水合物儲量的估算 111 第五章 結果與討論 132 參考文獻 143 | |
dc.language.iso | zh-TW | |
dc.title | 反射震測資料之震波速度與震幅-支距分析推估台灣西南海域地層中天然氣水合物之潛能 | zh_TW |
dc.title | Seismic velocity and amplitude versus offset analyses to estimate gas-hydrate resource potential offshore SW Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 史菲力 | |
dc.contributor.oralexamcommittee | 徐春田,戚務正,鄭文彬,宣大衡,王詠絢,王天楷,陳浩維 | |
dc.subject.keyword | 天然氣水合物,震波速度,震幅-支距分析,反射震測,海底仿擬反射, | zh_TW |
dc.subject.keyword | gas hydrate,seismic velocity,amplitude versus offset,reflection seismic,Bottom Simulating Reflector, | en |
dc.relation.page | 155 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-05-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 9.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。