Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭紀倫(Chi-Lun Cheng),廖振鐸(Chen-Tuo Liao)
dc.contributor.authorJia-Ren Tsaien
dc.contributor.author蔡嘉仁zh_TW
dc.date.accessioned2021-06-08T07:00:35Z-
dc.date.copyright2009-06-24
dc.date.issued2009
dc.date.submitted2009-06-08
dc.identifier.citationAdcock, R. J. (1877). Note on the method of least squares. Analyst, 4, 183-184.
Anderson, T. W. and Sawa, T. (1982). Exact and approximate distributions of the maximum likelihood estimator of a slope coefficient. Journal of the Royal Statistical Society Series B, 44, 52-62.
Boggs, P. T., Donaldson, J. R., Byrd, R. H., and Schnabel, R. B. (1989). ORDPACK: Software for weighted orthogonal distance regression. Translations on Mathematical Software, 15, 348-364.
Booth, J. G. and Hall, P. (1993). Bootstrap confidence regions for functional relationships in errors-in-variables models. The Annals of Statistics, 21, 1780-1791.
Brand, R. and Kragt, H. (1992). Importance of trends in the interpretation of an overall odds ratio in the meta-analysis of clinical trials. Statistics in Medicine, 11, 2077-2082.
Brown R. L. (1957). Bivariate structural relation. Biometrika, 44, 84-96.
Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement error in nonlinear models. A modern perspective. 2nd edn. London: Chapman & Hall.
Casella, G. and Berger, R. L. (2002). Statistical Inference. 2nd edn. Wadsworth & Brooks/Cole, Pacific Grove, CA.
Cheng, C-L. and Riu, J. (2006). On estimating linear relationships when both variables are subject to heteroscedastic measurement errors. Technometrics, 48, No.4, 511-519.
Cheng, C-L. and Van Ness, J.W. (1994). On estimating the linear relationships when both variables are subject to errors. Journal of the Royal Statistical Society Series B, Vol. 56, No.1, 167-183.
Cheng C-L. and Van Ness J. W. (1999). Statistical Regression with Measurement Error. Arnold: London.
Creasy, M. A. (1956). Confidence limits for the gradient in the linear functional relationship. Journal of the Royal Statistical Society, Series B, 18, 65-69.
Cornbleet, P. J. Gochman, N. (1979). Incorrect least-squares regression coefficients in method-comparison analysis. Clinical Chemistry, Vol 25, No. 13, 432-437.
Cui, H. and Chen, S. X. (2003). Empirical likelihood confidence region for parameter in the errors-in-variables models. Journal of Multivariate Analysis, 84, 101-115.
de la Guardia, M., Salvador, A., and Berenguer, V., (1981). Un modelo alternativo para la evaluacion de la exactitud de los procedimientos analiticos. Anales de.
Quimica, Serie B, 77, 129-132.
del Rio F. J., Riu J., and Rius, F. X. (2001). Prediction intervals in linear regression taking into account errors on both axes. Journal of Chemometrics, 15, 773-788.
Deming, W. E. (1943). Statistical Adjustment of Data. Wiley, New York.
Fuller W. A. (1987). Measurement Error Models. Wiley: New York.
Gamsky, C. J., Howes, G. R., and Taylor, J. W. (1994). Infrared reflection absorption spectroscopy of photoresist films on silicon wafers: measuring film thickness and removing interference fringes. Analytical Chemistry, 66, 1015-1020.
Gleser, L. J. (1987). Confidence intervals for the slope in a linear errors-in-variables models. Advances in Multivariate Statistical Analysis, (K. Gupta, ed.), 85-109.
Dordrecht: D. Reidel.
Gleser, L. J. and Hwang, J. T. (1987). The nonexistence of 100(1-alpha)% confidence sets of finite expected diameter in errors-in-variables and related models. The Annals of Statistics, 15, 1351-1362.
Hannig, J., Iyer H., and Patterson, P. (2006). Fiducial generalized confidence interval. Journal of the American Statistical Association, 101, No. 473, 254-269.
Huber, P. J. (1981). Robust Statistics. Wiley: New York.
Huwang, L. (1996). Asymptotically honest confidence sets for structural errors-invariables models. The Annals of Statistics, 24, No. 4, 1536-1546.
Hwang, J. T. (1995). Fieller’s problems and resampling techniques. Statistica Sinica, 5, 161-171.
Jolicoeur, P. (1973). Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment. Journal of the American Statistical Association, 68 (344), 866-871.
Jolicoeur, P. (1990). Bivariate allometry: interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship. Journal
of Theoretical Biology, 144, 275-285.
Kasala, S. and Mathew, T. (1997). Exact confidence regions and tests in some linear functional relationships. Statistics and Probability Letters, 32, No. 3, 325-328.
Kulathinal, S. B, Kuulasmaa, K, and Gasbarra, D. (2002). Estimation of an errorsin-variables regression model when the variances of the measurement errors vary between the observations. Statistics in Medicine, 21, 1089-1101.
Lagenfeld, J. J., Hawthorne, S. B., Miller D. J., and Pawliszyn, J. (1994). Role of modifiers for analytical-scale supercritical fluid extraction of environmental
samples. Analytical Chemistry, 66, 909-916.
Li, K. C. (1989). Honest confidence regions for nonparametric regression. The Annals of Statistics, 17, 1001-1008.
Liau, P-H. and Shalabh. (2009). Confidence interval estimation in ultrastructural model. Communications in Statistics- Theory & Methods, 38, 675-681.
Linder, E., and Babu, A., G. J. (1994). Bootstrapping the linear functional relationship with known error variance ratio, Scandinavian Journal of Statistics, 21, 21-39.
Linnet, K. (1990). Estimation of the linear relationship between the measurements of two methods with proportional errors. Statistics in Medicine, 9, 1463-1473.
Linnet, K. (1993). Evaluation of regression procedures for method comparison studies, Clinical Chemistry, 39(3), 424-432.
Lisy, J. M., Cholvadova, A., and Kutej, J. (1990). Multiple straight-line leastsquares analysis with uncertainties in all variables, Computers and Chemistry,
14, 189-192.
LopezAvila, V., Young, R., and Beckert, W. F. (1994). Microwave-assisted extraction of organic compounds from standard reference soils and sediments. Analytical Chemistry, 66, 1097-1106.
Moran, P. A. P. (1971). Estimating structural and functional relationships. Journal of Multivariate Analysis, 1, 232-255.
Neumark, S. (1965). Solution of cubic and quartic equations. Oxford: New York.
Okamoto, M. (1983). Asymptotic theory of Brown-Fereday's method in a linear structural relationship. Journal of the Japan Statistical Society, 13, 53-56.
Patefield, W. M. (1981). Confidence intervals for the slope of a linear functional relationship. Communications in Statistics- Theory & Methods, 10 (17), 1759-1764.
Reiersol, O. (1950). Identifiability of a linear relation between variables which are subject to error. Econometrica, 18, 375-389.
Riu J. and Rius F. X. (1995). Univariate regression models with errors in both axes.Journal of Chemometrics, 9, 343-362.
Riu J, and Rius F. X. (1996). Assessing the accuracy of analytical methods using linear regression with errors in both axes. Analytical Chemistry, 68, 1851-1857.
Ripley B. D., and Thompson M. (1987). Regression techniques for the detection of analytical bias. The Analyst, 112 (4), 377-383.
Schneeweiss, H. (1982). Note on Creasy's confidence limits for the gradient in the linear functional relationship. Journal of Multivariate Analysis, 12, 155-158.
Sprent, P. A. (1966). Generalized least-squares approach to linear functional relationships. Journal of the Royal Statistical Society, Series B, 28, 278-297.
Walter, S. D. (1997). Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Statistics in Medicine, 16, 2883-2900.
Webster, C. P., Poulton, P. R., and Goulding, K. W. T. (1999). Nitrogen leaching from winter cereals grown as part of a 5-year ley-arable rotation. European
Journal of Agronomy, 10, 99-109.
Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association, 88, No. 423, 899-905.
Weerahandi, S. (1995). Exact statistical methods for data analysis. New York: Springer-Verlag.
Weerahandi, S. (2004). Generalized inference in repeated measures. Exact methods in MANOVA and mixed models. New York: Wiley.
Willassen, J. (1984). Testing hypotheses on the unidentifiable structural parameters in the classical 'errors-in-variables' model with application to Friedman's permanent income model. Economic Letters, 14, 221-228.
Williams E. J. (1959). Regression Analysis. Wiley: New York.
Williams E. J. (1973). Test of correlation in multivariate analysis. Bull. Int. Statist. Inst. Proc. 39the session, 45, Book 4: 218-232.
Wong, M. Y. (1989). Likelihood estimation of a simple linear regression model when both variables have error. Biometrika, 76, 141-148.
Zhang, H. (1994). Confidence regions in linear functional relationships. The Annals of Statistics, 22, 49-66.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26113-
dc.description.abstract本篇論文主要探討的主題是線性誤差模型在測量誤差的變異是同質性或者異質性時之信賴區間估計。首先,當測量誤差的變異是同質性時,我們對斜率項參數建構信賴區間,除了回顧已發表的方法外,也提出一個新的方法,建議的區間方法分別和已存在的方法做模擬比較,比較的標準建構在覆蓋機率和平均長度上;另外,當測量誤差的變異是異質性時,我們不僅對斜率項參數建構信賴區間提出新的方法,也對截距項參數和斜率項參數建構聯合信賴區間。除了以實際例子說明建議的區間估計方法外,藉由蒙地卡羅模擬分析,建議的區間方法在覆蓋機率上也得到不錯的結果。zh_TW
dc.description.abstractThe dissertation discusses interval estimation in linear regression model with homoscedastic and heteroscedastic measurement errors in both axes. First of all, we introduce some interval methods and propose a new approach to find confidence interval for the slope in homoscedastic measurement error models. The performance of the interval estimation is compared in terms of both coverage probability and its diameter via simulation studies. Second, we suggest two approaches to estimate confidence intervals for the slope and joint confidence regions for both intercept and slope in heteroscedastic measurement error models. Application of these methods are illustrated with real data sets. The performances of the confidence interval estimation are also studied numerically via Monte Carlo simulation in terms of coverage probability.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:00:35Z (GMT). No. of bitstreams: 1
ntu-98-D92621202-1.pdf: 548614 bytes, checksum: 5333091761869b8bd95f80712571cdf0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 iii
Abstract iv
Chapter 1 Introduction 1
Chapter 2 Linear homoscedastic measurement error models 7
2.1 A review of interval estimation 7
2.1.1 Interval estimation for the slope parameter 7
Remark 8
2.1.2 The confidence interval for error variance is known 9
2.2 Generalized confidence interval 11
2.3 Results of simulation and an example 14
2.3.1 Simulation studies 14
2.3.2 An example 16
2.4 Conclusions 16
Table 1 18
Table 2 20
Chapter 3 Linear heteroscedastic measurement error models 22
3.1 Confidence interval for the slope 22
3.1.1 Asymptotic confidence interval 23
3.1.2 Modified Creasy-Williams' confidence interval 26
Remark 28
3.2 Joint confidence regions for intercept and slope 29
3.2.1 Asymptotic confidence region 29
3.2.2 Brown's confidence region 30
3.3 Experimental part 31
Data set 1 31
Figure 1 32
Data set 2 33
Data set 3 33
Data set 4 34
Data set 5 35
Data set 6 35
3.4 Simulation studies 36
3.5 Concluding remarks 38
Appendix A 40
Table 3 41
Table 4 42
Table 5 43
Table 6 48
Chapter 4 Conclusions and future research 50
Bibliography 52
dc.language.isoen
dc.subject信賴區間zh_TW
dc.subject異質性測量誤差zh_TW
dc.subject覆蓋機率zh_TW
dc.subject期望長度zh_TW
dc.subject測量誤差模型zh_TW
dc.subject確認性zh_TW
dc.subject同質性測量誤差zh_TW
dc.subjectConverge probabilityen
dc.subjectMeasurement error modelsen
dc.subjectIdentifiabilityen
dc.subjectHomoscedastic measurement errorsen
dc.subjectHeteroscedastic measurement errorsen
dc.subjectConfidence intervalen
dc.subjectExcepted lengthen
dc.title線性測量誤差模型之區間估計zh_TW
dc.titleInterval Estimation in Linear Measurement Error Modelsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.advisor-orcid,廖振鐸(ctliao@ntu.edu.tw)
dc.contributor.oralexamcommittee廖本煌(Pen-Hwang Liau),陳宏(Hung Chen),劉仁沛(Jen-Pei Liu),蔡風順(Feng-Shun Chai),高振宏(Chen-Hung Kao)
dc.subject.keyword信賴區間,覆蓋機率,期望長度,異質性測量誤差,同質性測量誤差,確認性,測量誤差模型,zh_TW
dc.subject.keywordConfidence interval,Converge probability,Excepted length,Heteroscedastic measurement errors,Homoscedastic measurement errors,Identifiability,Measurement error models,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2009-06-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
535.76 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved