Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成
dc.contributor.authorHsin-Tien Yuen
dc.contributor.author余欣恬zh_TW
dc.date.accessioned2021-06-08T06:59:47Z-
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-06-24
dc.identifier.citationReferences
1. Amin, K. and V. Ng, 1993, “ARCH Processes and Option Valuation,” working paper, University of Michigan.
2. Avramidis, A. and P. Hyden, 1999, “Efficiency improvements for pricing American options with a stochastic mesh.” Winter Simulation Conference 1999. 344-350.
3. Bates, D., 2003, “Empirical option pricing: a retrospection,” Journal of Econometrics, 116. 387-404.
4. Black, K. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81. 637-659.
5. Bengt, H., and Jean, T., 2001, “LAPM: A Liquidity-Based Asset Pricing Model,” The Journal of Finance, 5.1837-1867.
6. Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31. 307-327.
7. Boyle, P., Kolkiewicz A. and Tan K. S., 2003, “An improved simulation method for pricing high-dimensional American derivatives,” Mathematics and Computers Simulation, 62. 315-322.
8. Broadie, M. and P. Glasserman, 1997, “A Continuity Correction for Discrete Barrier Options,” Mathematical Finance, 7. 325-348.
9. Christoffersen, P., S. Heston, and K. Jacobs, 2003, “Option Valuation with Conditional Skewness,” Journal of Econometrics.
10. Christoffersen, P. and K. Jacobs, 2001, “The Importance of the Loss Function in Option Pricing,” working paper.
11. Christoffersen P., and K. Jacobs, 2004, “Which GARCH Model for Option Valuation?” Management Science, 50, No9, 1204-1221.
12. Cox, J., J. Ingersoll and S. Ross, 1985, “A Theory of the Term Structure of Interest Rates,” Econometrica, 53. 385-407.
13. Duan J., 1995, “The GARCH Option Pricing Model,” Mathematical Finance,5 , 13-32.
14. Duan, J., G. Gauthier, and J. Simonato, 1999, “An Analytical Approximation for the GARCH Option Pricing Model.” Journal of Computational Finance, 2, 75-116.
15. Dumas, B., J. Fleming, and R. Whaley, 1998, “Implied Volatility Functions: Empirical Tests,” Journal of Finance, 53, 2059-2106.
16. Engle, R., 1982 “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, 50, No.4, 987-1008.
17. Engle, R., and C. Mustafa, 1992, “Implied ARCH Models from Options Prices,” Journal of Econometrics, 52, 289-311.
18. Fahlenbrach, R. and P. Sandas, 2003, “Bid-Ask Spreads and Inventory Risk: Evidence from the FTSE 100 Index Options Market”, working paper.
19. Fama, E., 1965, “The Behavior of Stock Market Prices,” Journal of Business, 34-105.
20. Geske, R., 1979, “The valuation of compound options,” Journal of Financial Economics, 7. 63-81.
21. Hanke, M., 1997, “Neural Newwork Approximation of Option-pricing Formulas for Analytically Intractable Option-pricing Models,” Journal of Computational Intelligence in Finance, 1(5). 20-27.
22. Haugh, M. and L. Kogan, 2001, “Pricing American Options: A Duality Approach,” working paper, MIT.
23. Hentschel, L., 1995, “All in the family Nesting symmetric and asymmetric GARCH models,” Journal of Financial Economics, 39, 71-104.
24. Heston, S., 1993, “A Closed-Form Solution for Options with Stochastic Volatility with Application to Bond and Currency Options,” The Review of Financial Studies, 6, No.2 , 327-343.
25. Heston, S. and S. Nandi, 2000, “A Closed-Form GARCH Option Valuation Model,” Review of Financial Studies, 13, 585, 625.
26. Hsieh., K. C. and P. Ritchken, 2000, “An Empirical Comparison of GARCH Option Pricing Models” working paper.
27. Jones, C., 2003, “The dynamics of stochastic volatility: evidence from underlying and option markets”, 116. 181-224.
28. La, J. and Lemieux, C., 2005, “A Study of Variance Reduction Techniques for American Option Pricing,” Winter Simulation Conference 2005.
29. Longstaff, F. and E. Schwartz, 2001, “Valuing American Options by Simulation: A Simple Least-Squares Approach,” Review of Financial Studies 14. 307-311.
30. Mandelbrot, B., 1966, “Forecasts of Future Prices, Unbiased Markets and Martingale Models,” Journal of Business, 39. 242-255.
31. Merton, R., 1973, “The Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, 4. 141-183.
32. Nelson, D.B., 1990, “ARCH models as diffusion approximations,” Journal of Econometrics, 45. 7-38.
33. Ritchken, P. and R. Trevor, 1999, “Pricing Options under Generalized GARCH and Stochastic Volatility Processes,” Journal of Finance, 54, 1, 377-402.
34. Rubenstein, M., 1983, “Displaced diffusion option pricing,” Journal of Finance, 38. 203-217.
35. Su, Y.C and Fung, 2004, “An application of Closed-Form GARCH Option Pricing Model to TAIEX Options and Volatilities.”
35.Su, Y.C. and Chen, 2006, “An Application of Closed-Form GARCH Option Pricing Model to FTSE 100 Options and Volatilities.”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26080-
dc.description.abstract許多實證的研究都顯示Black-Scholes的選擇權定價模型會因為一些不正確的假設而存有系統性的誤差。實際的應用方面, Black-Scholes的隱含波動性會隨著選擇權的價內和價外(moneyness)和距離到期日時間長短而改變。為了解決這個問題,許多研究學者都努力研發出新的選擇權定價模型。在這份論文裡,探討的是Heston和Nandi的GARCH模型對於North American Industry Groups中30個不同產業的定價有效度。每個產業均取交易量最大與最小的標的公司進行研究。依照不同的產業分類,對這些公司進行MLE的分析。雖然HN GARCH整體來說的估計比較準確,它特別不適合對於那些資本額比較小的公司進行選擇權定價,在流動性(交易量)較少或本益比特別高的公司也會出現比較大的評價誤差。zh_TW
dc.description.abstractMany empirical researches have indicated that the Black-Scholes option pricing model demonstrate systematic biases due to some unreasonable assumptions. In practice, Black-Scholes implied volatilities tend to vary depending on moneyness and time to maturities. In response to this problem, many researchers have devoted themselves to creating new option pricing models. In this paper, the pricing efficiency of Heston and Nandi GARCH (HN GARCH) model is examined on the 60 companies of 30 different industries in the North American Industry Groups. Analyses are then carried out using the MLE method on different categories of companies. It is found that, while HN GARCH model has smaller valuation errors overall, they appear to be ill-suited for valuation of small trading volume companies and display notable pricing error for options of high P/E ratio companies. They do, however, do a good job modeling the option prices of higher liquidity companies.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:59:47Z (GMT). No. of bitstreams: 1
ntu-98-R96723046-1.pdf: 768744 bytes, checksum: 8c032ae3916d33b1c16432e303c86865 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………i
序言………………………………………………………………………………………ii
中文摘要…………………………………………………………………………iii
英文摘要Abstract……………………………………………………………iv
1. Introduction……………………………………………………………………….1
2. Data and Methodology……………………………………………………………9
2.1 Options Introduction………………………………………………………9
2.2 North American Industry Groups ………………………………………12
2.3 Data Description…………………………………………………………13
2.4 The Model…………………………………………………………………16
3. Empirical Results………………………………………………………………24
Estimation………………………………………………………………………24
Out-of-sample Comparison……………………………………………………27
4. Conclusions………………………………………………………………………31
References…………………………………………………………………………33
dc.language.isoen
dc.subject流動性zh_TW
dc.subjectBlack-Scholes選擇權定價模型zh_TW
dc.subjectHN GARCH模型zh_TW
dc.subjectNorth American Industry Groupszh_TW
dc.subjectMLE分析zh_TW
dc.subjectBlack-Scholes option pricing modelen
dc.subjectLiquidityen
dc.subjectMLE methoden
dc.subjectNorth American Industry Groupsen
dc.subjectHN GARCH modelen
dc.title流動性對於GARCH選擇權評價誤差的影響zh_TW
dc.titleLiquidity on GARCH Option Pricing Erroren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡星陽,黃漢青
dc.subject.keywordBlack-Scholes選擇權定價模型,HN GARCH模型,North American Industry Groups,MLE分析,流動性,zh_TW
dc.subject.keywordBlack-Scholes option pricing model,HN GARCH model,North American Industry Groups,MLE method,Liquidity,en
dc.relation.page87
dc.rights.note未授權
dc.date.accepted2009-06-24
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
750.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved