請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26037完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王耀輝(Yaw-Huei Wang) | |
| dc.contributor.author | Chin-Kai Huang | en |
| dc.contributor.author | 黃勁凱 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:58:56Z | - |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-02 | |
| dc.identifier.citation | 1. Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63, 443-494.
2. Bartram, S. M., Taylor, S. J., & Wang, Y. H. (2007). The Euro and European financial market integration. Journal of Banking and Finance, 31, 1461-1481. 3. Beckers, Stan. (1983). Variance of security price returns based on high, low, and closing prices. Journal of Business 56 (January):97–112. 4. Bell, D. E. and W. S. Krasker, (1986). Estimating Hedge Ratios, Financial Management.Summer, 34-39 5. Bollerslev,T. (1986).“Generalized Autoregressive Conditional heteroskedasticity,” Journal of Econometrics, 31, 307-327. 6. Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH approach. Review of Economics and Statistics, 72, 498-505. 7. Bollerslev.T , Engle R. F., and Wooldridge J. M. (1988). A capital asset pricing model with time-varying covariances, Journal of Political Economy, 96, pp. 116–131. 8. Brenner, R., and K. F. Kroner (1993). “Arbitrage, Cointegration and Testing for Simple Efficiency in Financial Markets,” Unpubl. Manuscript, Univ. of Arizona 9. Chen Y. H. (2005). Optimal Hedge Ratio of Commodity Futures Using bivariate DCC-CARR and DCC-GARCH Models. Master Thesis, Graduate Institute of Finance of National Central University. 10. Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) model. Journal of Money Credit and Banking, 37, 561-582. 11. Chou, R. Y., C. C. Wu, and N. Liu (2004). A comparison and empirical study in forecasting abilities of dynamic volatility models. Journal of Financial Studies, 12, 1-25. 12. Chou, R. Y., C. C. Wu and N. Liu (2006). Forecasting Time-varying Covariance with A Range-Based Dynamic Conditional Correlation Model, Working Paper 13. Ederington, L. H. (1979). The hedging performance of the new futures markets. Journal of Finance, 34, 157-170. 14. Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation, Econometrica, 50, 987--1008. 15. Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20, 339-350. 16. Engle, R. F. and C. W. J. Granger (1987). “Cointegration and Error Correction: Representation, Estimation and Testing.” Econometrica, 55, 251-276. 17. Engle, R. F. & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122-150. 18. Engle, R. F. & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. NBER Working Paper No. 8554. 19. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-1801. 20. Hansen, B. (1994). Autoregressive conditional density estimation. International Economic Review, 35, 705-730. 21. Herbst, A. F., Kare, D. D., and J. F. Marshall, (1993). A Time Varying, Convergence Adjusted, Minimum Risk Futures Hedge Ratio. Advances in Futures and Options Research. 6, 137-155. 22. Hsu C. C, Tseng C. P, and Wang Y. H. (2008). Dynamic Hedging with Futures: A Copula-based GARCH Model. Journal of Futures Markets 28, 1095-1116. 23. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall. 24. Johnson, L. L., (1960). The Theory of Hedging and Speculation in Commodity Futures. Review of Economic Studies. 27, 139-151. 25. Kroner, K. F. & Sultan, J. (1991). Exchange rate volatility and time varying hedge ratios. In S. G. Rhee & R. P. Chang (Ed.), Pacific-basin capital markets research (pp. 397-412). Amsterdam: Elsevier Science Publishers, North-Holland. 26. Kroner, K. F. & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Finance and Quantitative Analysis, 28, 535-551. 27. Longin, F. & Solnik, B. (2001). Extreme correlation of international equity markets. Journal of Finance, 56, 649-676. 28. Malevergne, Y. & Sornette, D. (2003). Testing the gaussian copula hypothesis for financial assets dependences. Quantitative Finance, 3, 231-250. 29. Morgan, I. G. (1976), “Stock Price and Heteroskedasticity,” Journal of Business, Vol. 49, pp. 496-508. 30. Nelsen, R. B. (1999). An introduction to copulas. New York: Springer. 31. Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53, 61-65 32. Patton, A. J. (2006a). Modeling asymmetric exchange rate dependence. International Economic Review, 47, 527-556. 33. Patton, A. J. (2006b). Estimation of multivariate models for time series of possibly different lengths. Journal of Applied Econometrics, 21, 147-173. 34. Stein, J. L., (1961). The Simultaneous Determination of Spot and Futures Prices. American Economic Review. 51, 1012-25. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26037 | - |
| dc.description.abstract | 過去一年多以來全世界都經歷了全球的金融危機,所有相關的金融市場,都面對了前所未見的市場波動。在這樣的情況下,避險對於風險管理的重要性和需求也與日俱增。對於持有現貨資產的投資人,想要規避風險,直覺的方式就是利用相對應的期貨契約,而避險也被認為是期貨的主要功能之一。隨著期貨市場的活絡,如何決定最佳的避險比率也成為主要研究的課題,從過去的文獻中,提出許多的動態避險模型,它們大致上能做出比原始模型更好的避險的效果,但改善的幅度卻是隨著使用的動態避險模型和評估期間有所不同。在這篇論文中,在不考慮交易成本的前提下,我們針對兩個方面,報酬基礎和變幅基礎的波動模型分別在兩種不同的相依結構DCC和Copula下的樣本內和樣本外避險結果進行比較。根據實證的結果觀察,變幅基礎的模型特別在波動大的市場下有較佳的預測樣本外短期波動的能力,另一方面報酬基礎的模型則是在樣本內和樣本外都保持一定的避險表現,雖然不一定是最佳的避險模型,但是有很好的一致性,對於避險而言這是非常重要的性質。
而Copula對於DCC模型而言,在樣本內外的避險結果,並沒有展現出明顯的優勢, 推測可能的原因是計算條件共變異數時,採用了數值積分而產生的小幅計算誤差,即可能抵銷了因為使用Copula相依結構因而放寬了限制帶來的好處。或是這也表示著有更符合現實,符合實際分配的函數或架構值得進一步研究。 | zh_TW |
| dc.description.abstract | The world has experienced the global financial crisis and extremely volatile impact for the past year. Under this circumstance, the demands for risk management increase. For investor who possesses spot assets, it is natural to think of the corresponding futures contract for hedging purpose. Way to determine the optimal ratios for hedging purpose has become an important task. Dynamic hedging models generally result in better risk reduction compared to conventional method. However, the performances differ. This thesis attempts to make the comparison of the hedging performances cross two dimensions, return-based against range-based and DCC against Copula among both in-sample and out-of-sample results. According to the empirical results, while the range-based models in general demonstrate relatively better out-of-sample forecasting power under volatile environment, the return-based models can be considered to be more consistent cross markets and cross period of time. As for the copula-based model, the improvement over the DCC-based model is somehow insignificant. The numerical integral for generating covariance maybe blamed for this. The limitation on the computation accuracy could bring inaccuracy on hedging ratio and thus neutralize the possible benefit brought by using more realistic distributions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:58:56Z (GMT). No. of bitstreams: 1 ntu-98-R96723021-1.pdf: 407916 bytes, checksum: 3f6a1d457b7eb33f4e2b6195e9ac12fb (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝辭 i
摘要 ii Abstract iii 1. Introduction 1 2. Literature Review 4 3. Hedging Methodology 8 3.1 Hedging Theories 8 3.2 Optimal Hedging Ratio 10 3.3 Conventional Method 12 4. Dynamic Hedging Model 13 4.1 Dynamic Conditional Correlation Model 13 4.1.1 Return Based Model 14 4.1.2 Range Based Model 16 4.1.3 DCC model and Parameter Estimation 18 4.2 The Copula-Based Model 20 4.2.1 Skewed-t Model 20 4.2.2 Copula Function 22 4.2.3 Parameters Estimation 24 5. Empirical Results 26 5.1 Data and Diagnostic Analysis 26 5.2 Parameters Estimation 30 5.3 In sample Hedging Performance 38 5.4 Out of sample Hedging Performance 41 6. Conclusion 44 7. Reference 47 | |
| dc.language.iso | en | |
| dc.subject | Copula | zh_TW |
| dc.subject | 動態避險 | zh_TW |
| dc.subject | 報酬基礎 | zh_TW |
| dc.subject | 變幅基礎 | zh_TW |
| dc.subject | DCC | zh_TW |
| dc.subject | Dynamic Hedging | en |
| dc.subject | Copula | en |
| dc.subject | DCC | en |
| dc.subject | Range-Based | en |
| dc.subject | Return-Based | en |
| dc.title | 不同相依結構下兩種波動模型之動態避險 | zh_TW |
| dc.title | Dynamic Hedging: Time-varying optimal hedging, by return-based and range-based models under different dependent structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐之強,何耕宇 | |
| dc.subject.keyword | 動態避險,報酬基礎,變幅基礎,DCC,Copula, | zh_TW |
| dc.subject.keyword | Dynamic Hedging,Return-Based,Range-Based,DCC,Copula, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-02 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 398.36 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
