請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰(Pi-Tai Chou) | |
| dc.contributor.author | Yi-Chih Lin | en |
| dc.contributor.author | 林奕志 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:58:16Z | - |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-08 | |
| dc.identifier.citation | 1. (a) Sheik-Bahae, M.; Said, A. A.; Wei, T.-H.; Hagan, D. J.; Van Stryland, E. W. IEEE J. Quantum Electron. 1990, 26, 760–769. (b) Wei, T. H.; Hagan, D. J.; Sense, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R. Appl. Phys. B 1992, 54, 46. (c) Swiatkiewicz, J.; Prasad, P.N.; Reinhardt, B. A. Opt. Comm. 1998, 157, 135. (d) Kamada, K.; Matsunaga, A.; Yoshino, K. J. Opt. Soc. Am. B 2003, 20, 529–537.
2. Powell, C. E.; Humphrey, M. G. Coord. Chem. Rev. 2004, 248, 725-756. 3. Kaplan, A.E. Radiophys. Quant. Electron. 1969, 12, 692-696. 4. Hermann, J. A. and McDuff, R. G. J. Opt. Soc. Am. B 1993, 10, 2056-2064. 5. Tian, J.-G.; Zang, W.-P.; Zhang, C.-Z.; Zhang, G. Appl. Opt. 1995, 34, 4331-4336. 6. Fisher, W. G.; Wachter, E. A.; Lytle, F. E.; Armas, M.; Seaton, C. Appl. Spectrosc. 1998, 52, 536-542. 7. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244–3266. 8. Bernard B., Molecular Fluorescence: Principles and Applications, Wiley-VCH, New York, 2004. 9. Nicholas J. T., Modern Molecular Photochemistry, University Science Books, 1991. 10. C. Xu, W.W. Webb, J. Opt. Soc. Am. B 1996, 13, 481 – 491. 11. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, H. L. Anderson, J. Phys. Chem. B 2005, 109, 7223 – 7236. 12. N. S. Makarov, M. Drobizhev, A. Rebane, Opt. Express 2008, 16, 4029 – 4047. 13. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. R_ckel, S. Thayumanavan, S. R. Marder, D. Beljonne, J.-L. Br_das, J. Am. Chem. Soc. 2000, 122, 9500 – 9510. 14. (a) Huang, P. H.; Shen, J. Y.; Pu, S. C.; Wen, Y. S.; Lin, J. T.; Chou, P. T.; Yeh, M. C. P. J. Mater. Chem. 2006, 16, 850. (b) Chou, C. F.; Huang, T. H.; Lin, J. T.; Hsieh, C. C.; Lai, C. H.; Chou, P. T.; Tsai, C. Tetrahedron 2006, 62, 8467. 15. Fisher, W. G.; Wachter, E. A.; Lytle, F. E.; Armas, M.; Seaton, C. Appl. Spectrosc. 1998, 52, 536. 16. (a) Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J. Adv. Mater. 1999, 11, 852–857. (b) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Mater. 2004, 16, 432–436. (c) Fave, C.; Cho, T.-Y.; Hissler, M.; Chen, C.-W.; Luh, T.-Y.; Wu, C.-C.; Reau, R. J. Am. Chem. Soc. 2003, 125, 9254–9255. (d) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Pure Appl. Chem. 1999, 71, 2095–2106. (e) Jia, W. L.; McCormick, T.; Tao, Y.; Lu, J.-P.; Wang, S. Inorg. Chem. 2005, 44, 5706–5712. 17. (a) Gimeno, M. C.; Laguna, A., Silver and Gold. In Comprehensive Coordination Chemistry II, McCleverty, J. A.; Meyer, T. J., Eds. Elsevier: New York, 2003; Vol. 6, pp 911–1145. (b) Schmidbaur, H.; Cronje, S.; Djordjevic, B.; Schuster, O. Chem. Phys. 2005, 311, 151–161. 18. (a) Wei, Q.-H.; Yin, G.-Q.; Zhang, L.-Y.; Shi, L.-X.; Mao, Z.-W.; Chen, Z.-N. Inorg. Chem. 2004, 43, 3484–3491. (b) Wei, Q.-H.; Zhang, L.-Y.; Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N. J. Am. Chem. Soc. 2004, 126, 9940–9941. (c) Yin, G.-Q.; Wei, Q.-H.; Zhang, L.-Y.; Chen, Z.-N. Organometallics 2006, 25, 580–587. (d) de la Riva, H.; Nieuwhuyzen, M.; Fierro, C. M.; Raithby, P. R.; Male, L.; Lagunas, M. C. Inorg. Chem. 2006, 45, 1418–1420. 19. Koshevoy, I. O.; Koskinen, L.; Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A. Angew. Chem. Int. Ed. 2008, 47, 3942–3945. 20. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Khodorkovskiy, M. A.; Pakkanen, T. A. Inorg. Chem. 2008, 47, 9478–9488. 21. Baldwin, R. A.; Cheng, M. T. J. Org. Chem. 1967, 32, 1572–1577. 22. Evleth, E. M. J.; Freeman, L. D.; Wagner, R. I. J. Org. Chem. 1962, 27, 2192–2197. 23. Coates, G. E.; Parkin, C. J. Chem. Soc. 1962, 3220–3226. 24. Drake, J. M.; Lesiecki, M. L.; Camaioni, D. M. Chem. Phys. Lett. 1985, 113, 530–534. 25. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 26. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chem. Acc. 1990, 77, 123– 141. 27. Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571–2577. 28. (a) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283–290. (b) Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136–9148. (c) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119-124. (d) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. 29. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 62, 165–169. 30. Yam, V. W.-W.; Choi, S. W.-K.; Cheung, K.-K. Organometallics 1996, 15, 1734–1739. 31. Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696–7710. 32. Müller, T. E.; Choi, S. W.-K.; Mingos, D. M. P.; Murphy, D.; Williams, D. J.; Yam, V. W.-W. J. Organomet. Chem. 1994, 484, 209–224. 33. Tung, Y.-L.; Wu, P.-C.; Liu, C.-S.; Chi, Y.; Yu, J.-K.; Hu, Y.-H.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Tao, Y.; Carty, A. J.; Shu, C.-F.; Wu, F.-I. Organometallics 2004, 23, 3745–3748. Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.; Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 2005, 44, 1344–1353. Tung, Y.-L.; Lee, S.-W.; Chi, Y.; Chen, L.-S.; Shu, C.-F.; Wu, F.-I.; Carty, A. J.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Adv. Mater. 2005, 17, 1059–1064. 34. Hanaoka, K.; Kikuchi, K.; Kobayashi, S.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13502–13509. 35. (a) Zhou, W.; Kuebler, S. M.; Braun, K. L.; Yu, T.; Cammack, J. K.; Ober, C. K.; Perry, J. W.; Marder, S. R. Science 2002, 296, 1106. (b) Kawata, S.; Sun, H.-B.; Tanaka, T.; Takada, K. Nature 2001, 412, 697. (c) Sun, H.-B.; Mizeikis, V.; Xu, Y.; Juodkazis, S.; Ye, J.-Y.; Matsuo, S.; Misawa, H. Appl. Phys. Lett. 2001, 79, 1. (d) Maruo, S.; Nakamura, O.; Kawata, S. Opt. Lett. 1997, 22, 132. 36. Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73. 37. (a) Bhawalkar, J. D.; Kumar, N. D.; Zhao, C. F.; Prasad, P. N. J. Clin. Laser Med. Surg. 1997, 15, 201. (b) He, G. S.; Markowicz, P. P.; Line, P.-C.; Prasad, P. N. Nature 1999, 415, 767. (c) Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc Natl. Acad. Sci. U.S.A. 1996, 93, 10763. (d) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434. 38. Ko¨ler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. Science 1997, 276, 2039. 39. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein and J. A. G. Williams, Proc. Natl. Acad. Sci. USA, 2008, 105, 16071–16076. 40. (a) He, G. S.; Xu, G. C.; Prasad, P. N.; Reinhardt, B. A.; Bhatt, J. C.; McKellar, R.; Dillard, A. G. Opt. Lett. 1995, 20, 435. (b) Calvete, M.; Yang, G. Y.; Hanack, M. Synth. Met. 2004, 141, 231. 41. (a) Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843. (b) Strickler, J. H.; Webb, W. W. Opt. Lett. 1991, 16, 1780. (c) Belfield, K. D.; Schafer, K. J. Chem. Mater. 2002, 14, 3656. 42. Marder, S. R.; Gorman, C. B.; Meyers, F.; Perry, J.; Bourhill, G.; Bredas, J.-L.; Pierce, B. M. Science 1994, 265, 632. 43. (a) Prasad, P. N.; Reinhardt, B. A. Chem. Mater. 1990, 2, 660. (b) Larson, E. J.; Friesen, L. A.; Johnson, C. K. Chem. Phys. Lett. 1997, 265, 161. (c) Albota, M.; Beljonee, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord- Maughon, D.; Perry, J.; Rockel, H.; Rumi, M.; Subramanian, G.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653. (d) Chung, S. J.; Kim, K. S.; Lin, T. C.; He, G. s.; Swiatkiewicz, J.; Prasad, P. N. J. Phys. Chem. B 1999, 103, 10741. (e) Oberle, J.; Bramerie, L.; Jonusauskas, G.; Rullier, C. Opt. Commun.1999, 169, 325. (f) Belfield, K. D.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K. J.; Negres, R. A. Org. Lett. 1999, 1, 1575. (g) Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P. N.; Dombroskie, A. G.; Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan, L. S. Chem. Mater. 2001, 13, 1896. (h) Mongrin, O.; Porres, L.; Katan, C.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Tetrahedron Lett. 2003, 44, 8121. (i) Brousmiche, D. W.; Serin, J. M.; Frechet, J. M. J.; He, G. S.; Lin, T. C.; Chung, S. J.; Prasad, P. N. J. Am. Chem. Soc. 2003, 125, 1448. (j) Marder, S. R. Chem. Commun. 2006, 131. 44. (a) McKay, T. J.; Bolger, J. A.; Staromlynska, J.; Davy, J. R. J. Chem. Phys. 1998, 108, 5537. (b) McKay, T. J.; Staromlynska, J.; Davy, J. R.; Bolger, J. A. J. Opt. Soc. Am. B 2001, 18, 358. (c) McKay, T. J.; Staromlynska, J.; Wilson, P.; Davy, J. R. Appl. Phys. 1999, 85, 1337. (d) Staromlynska, J.; Chapple, P. B.; Davy, J. R.; McKay, T. J. Proc. SPIE 1994, 2229, 59. (e) Staromlynska, J.; McKay, T. J.; Bolger, J. A.; Davy, J. R. J. Opt. Soc. Am. B 1998, 15 (6), 1731. (f) Staromlynska, J.; McKay, T. J.; Wilson, P. J. Appl. Phys. 2000, 88, 1726. (g) Vestberg, R.; Malmstrøm, E.; Eriksson, A.; Lopes, C.; Lindgren, M. Proc. SPIE 2004, 5621, 31. 45. (a) Rogers, J. E.; Slagle, J. E.; Krein, D. M.; Burke, A. R.; Hall, B. C.; Fratini, A.; McLean, D. G.; Fleitz, P. A.; Cooper, T. M.; Drobizhev, M.; Makarov, N. S.; Rebane, A.; Kim, K.-Y.; Farley, R.; Schanze, K. S. Inorg. Chem. 2007, 46, 6483. (b) Yang, Z. D.; Feng, J. K.; Ren, A. M. Inorg. Chem. 2008, 47, 10841. (c) Tao, C. H.; Yang, H.; Zhu, N. Y.; Yam, V. W. W.; Xu, S. J. Organometallics, 2008, 27, 5453. 46. Koshevoy, I. O.; Koskinen, L.; Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A. Angew. Chem. Int. Ed. 2008, 47, 3942. 47. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Khodorkovskiy, M. A.; Pakkanen, T. A. Inorg. Chem. 2008, 47, 9478. 48. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Pakkanen, T. A. Organometallics, 2009, 28, 1369. 49. Koshevoy, I. O.; Lin, Y. C.; Karttunen, A. J.; Chou, P. T.; Vainiotalo, P.; Tunik, S. P.; Haukka, M.; Pakkanen, T. A. Inorg. Chem. 2009, 48, 2094. 50. Koshevoy, I. O.; Lin, Y. C.; Karttunen, A. J.; Haukka, M.; Chou, P. T.; Tunik, S. P.; Pakkanen, T. A. Chem. Commun. 2009, DOI: 10.1039/b901893j. 51. (a) Albota, M. A.; Xu, C.; Webb, W. W. Appl. Opt., 1998, 37, 7352. (b) Xu, C.; Webb,W. W. J. Opt. Soc. Am. B, 1996, 13, 481. 52. (a) Huang, P. H.; Shen, J. Y.; Pu, S. C.; Wen, Y. S.; Lin, J. T.; Chou, P. T.; Yeh, M. C. P. J. Mater. Chem. 2006, 16, 850. (b) Chou, C. F.; Huang, T. H.; Lin, J. T.; Hsieh, C. C.; Lai, C. H.; Chou, P. T.; Tsai, C. Tetrahedron 2006, 62, 8467. 53. Fisher, W. G.; Wachter, E. A.; Lytle, F. E.; Armas, M.; Seaton, C. Appl. Spectrosc. 1998, 52, 536. 54. (a) Sheik-Bahae, M.; Said, A. A.; Wei, T.-H.; Hagan, D. J.; Van Stryland, E. W. IEEE J. Quantum Electron. 1990, 26, 760. (b) Wei, T. H.; Hagan, D. J.; Sense, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R. Appl. Phys. B 1992, 54, 46. (c) Swiatkiewicz, J.; Prasad, P.N.; Reinhardt, B. A. Opt. Comm. 1998, 157, 135. 55. (a) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 2004, 126, 15352. (b) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L. J. Phys. Chem. B 2005, 109, 7223. 56. Yam, V. W.-W.; Choi, S. W.-K.; Cheung, K.-K. Organometallics 1996, 15, 1734. 57. a) V. W.-W. Yam, Acc. Chem. Res. 2002, 35, 555-563; b) N. J. Long, C. K. Williams, Angew. Chem. 2003, 115, 2690-2722; Angew. Chem. Int. Ed. 2003, 42, 2586-2617. 58. C. E. Powell, M. G. Humphrey, Coord. Chem. Rev. 2004, 248, 725-756. 59. a) Q.-H. Wei, G.-Q. Yin, Z. Ma, L.-X. Shia, Z.-N. Chen, Chem. Commun. 2003, 2188-2189; b) J. R. Berenguer, J. Fornies, B. Gil, E. Lalinde, Chem. Eur. J. 2006, 12, 785-795; c) J. R. Berenguer, A. Diez, J. Fernandez, J. Fornies, A. Garcia, B. Gil, E. Lalinde, M. T. Moreno, Inorg. Chem. 2008, 47, 7703-7716. 60. Q.-H. Wei, L.-Y. Zhang, G.-Q. Yin, L.-X. Shi, Z.-N. Chen, J. Am. Chem. Soc. 2004, 126, 9940-9941. 61. I. O. Koshevoy, L. Koskinen, M. Haukka, S. P. Tunik, P. Y. Serdobintsev, A. S. Melnikov, T. A. Pakkanen, Angew. Chem. 2008, 120, 4006-4009; Angew. Chem. Int. Ed. 2008, 47, 3942-3945. 62. I. O. Koshevoy, A. J. Karttunen, S. P. Tunik, M. Haukka, S. I. Selivanov, A. S. Melnikov, P. Y. Serdobintsev, M. A. Khodorkovskiy, T. A. Pakkanen, Inorg. Chem. 2008, 47, 9478-9488. 63. R. Uson, A. Laguna, M. Laguna, Inorg. Synth. 1989, 26, 85-91. 64. G. E. Coates, C. Parkin, J. Chem. Soc. 1962, 3220-3226. 65. B. K. Teo, Y. H. Xu, B. Y. Zhong, Y. K. He, H. Y. Chen, W. Qian, Y. J. Deng, Y. H. Zou, Inorg. Chem. 2001, 40, 6794-6801. 66. A. D. Becke, Phys. Rev. A 1988, 3098-3100; S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824. 67. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. 68. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chem. Acc. 1990, 77, 123-141. 69. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-2577. 70. a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283-290; b) M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148; c) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124; d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065. 71. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 62, 165-169. 72. I. O. Koshevoy, A. J. Karttunen, S. P. Tunik, M. Haukka, S. I. Selivanov, A. S. Melnikov, P. Y. Serdobintsev, T. A. Pakkanen, Organometallics 2009, accepted. 73. Crystal data for 1: C254.50H189Ag10Au12Cl5F12O4P6, M = 7344.43, yellow block, 0.47 × 0.15 × 0.11 mm3, monoclinic, space group P21/n (No. 14), a = 25.1281(2), b = 23.4103(2), c = 39.8036(3) Å, β = 99.6710(10)°, V = 23082.0(3) Å3, Z = 4, Dc = 2.113 g/cm3, F000 = 13796, Nonius KappaCCD, MoKα radiation, λ = 0.71073 Å, T = 90(2)K, 2θmax = 52.0º, 231392 reflections collected, 44603 unique (Rint = 0.0488). Final GooF = 1.008, R1 = 0.0387, wR2 = 0.0718, R indices based on 32359 reflections with I >2sigma(I) (refinement on F2), 2813 parameters, 65 restraints. Lp and absorption corrections applied, µ = 8.582 mm-1. CCDC 715007 (1) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 74. V. W.-W. Yam, S. W.-K. Choi, K.-K. Cheung, Organometallics 1996, 15, 1734-1739. 75. P. Pyykkö, Angew. Chem. 2004, 116, 4512-4557; Angew. Chem. Int. Ed. 2004, 43, 4412-4456. 76. a) Y.-L. Tung, P.-C. Wu, C.-S. Liu, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y. Tao, A. J. Carty, C.-F. Shu, F.-I. Wu, Organometallics 2004, 23, 3745-3748; b) F.-M. Hwang, H.-Y. Chen, P.-S. Chen, C.-S. Liu, Y. Chi, C.-F. Shu, F.-I. Wu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Inorg. Chem. 2005, 44, 1344-1353; c) Y.-L. Tung, S.-W. Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater. 2005, 17, 1059-1064. 77. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, J. A. G. Williams, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 16071-16076. 78. Long, N. J.; Williams, C. K., Angew. Chem. Int. Ed. 2003, 42, 2586-2617; Powell, C. E.; Humphrey, M. G., Coord. Chem. Rev. 2004, 248, 725-756; Yam, V. W.-W.; Wong, K. M.-C., Top. Curr. Chem. 2005, 257, 1-32. 79. Pyykko, P., Chem. Rev. 1997, 97, 597-636; Schmidbaur, H.; Schier, A., Chem. Soc. Rev. 2008, 37, 1931-1951. 80. Wei, Q.-H.; Zhang, L.-Y.; Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N., J. Am. Chem. Soc. 2004, 126, 9940-9941; Koshevoy, I. O.; Lin, Y.-C.; Karttunen, A. J.; Chou, P.-T.; Vainiotalo, P.; Tunik, S. P.; Haukka, M.; Pakkanen, T. A., Inorg. Chem. 2009, 48, 2094-2102. 81. Koshevoy, I. O.; Koskinen, L.; Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A., Angew. Chem. Int. Ed. 2008, 47, 3942-3945; Koshevoy, I. O.; Lin, Y.-C.; Karttunen, A. J.; Haukka, M.; Chou, P.-T.; Tunik, S. P.; Pakkanen, T. A., Chem. Commun. 2009, 2860–2862. 82. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Pakkanen, T. A., Organometallics 2009, 28, 1369-1376. 83. Wei, Q.-H.; Zhang, L.-Y.; Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N., Organometallics 2005, 24, 3818-3820. 84. A. D. Becke, Phys. Rev. A 1988, 3098-3100; S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824. 85. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. 86. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chem. Acc. 1990, 77, 123-141. 87. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-2577. 88. a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283-290; b) M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148; c) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124; d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065. 89. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 62, 165-169. 90. Yang, Y.; Sharp, P. R., J. Am. Chem. Soc. 1994, 116, 6983-6984. 91. Abu-Salah, O. M.; Al-Ohaly, A. R. A.; Knobler, C. B., J. Chem. Soc., Chem. Commun. 1985, 1502-1503. 92. Zeller, E.; Beruda, H.; Schmidbaur, H.; Anorg. Chem. Inst, T. U. M. G. G., Inorg. Chem. 1993, 32, 3203-3204. 93. Evans, D. G.; Mingos, D. M. P., J. Organomet. Chem. 1982, 232, 171-191. 94. Calhorda, M. J.; Crespo, O.; Gimeno, M. C.; Jones, P. G.; Laguna, A.; Lopez-de-Luzuriaga, J. M.; Perez, J. L.; Ramon, M. A.; Veiros, L. F., Inorg. Chem. 2000, 39, 4280-4285. 95. Demartin, F.; Manassero, M.; Naldini, L.; Ruggeri, R.; Sansoni, M., J. Chem. Soc., Chem. Commun. 1981, 222-223. 96. Mingos, D. M. P.; Powell, H. R.; Stolberg, T. L., Transition Met. Chem. 1992, 17, 334-337. 97. (a) Tung, Y.-L.; Wu, P.-C.; Liu, C.-S.; Chi, Y.; Yu, J.-K.; Hu, Y.-H.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Tao, Y.; Carty, A. J.; Shu, C.-F.; Wu, F.-I. Organometallics 2004, 23, 3745–3748. (b) Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.; Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 2005, 44, 1344–1353. (c) Tung, Y.-L.; Lee, S.-W.; Chi, Y.; Chen, L.-S.; Shu, C.-F.; Wu, F.-I.; Carty, A. J.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Adv. Mater. 2005, 17, 1059–1064. 98. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244-3266 99. Botchway, S. W.; Charnley, M.; Haycock, J. W.; Parker, A. W.; Rochester, D. L.; Weinstein, J. A.; Williams, J. A. G. P.N.A.S. 2008, 105, 16071-16076. 100. Long, N. J.; Williams, C. K., Angew. Chem. Int. Ed. 2003, 42, 2586-2617. 101. Younus, M.; Kohler, A.; Cron, S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Khan, M. S.; Lewis, J.; Long, N. J.; Friend, R. H.; Raithby, P. R., Angew. Chem. Int. Ed. 1998, 37, 3036-3039; Eryazici, I.; Moorefield, C. N.; Newkome, G. R., Chem. Rev. 2008, 108, 1834-1895; Tam, A. Y.-Y.; Lam, W. H.; Wong, K. M.-C.; Zhu, N.; Yam, V. W.-W., Chem. Eur. J. 2008, 4562–4576. 102. Yam, V. W.-W., Acc. Chem. Res. 2002, 35, 555-563. 103. Yam, V. W.-W.; Cheng, E. C.-C., Chem. Soc. Rev. 2008, 37, 1806-1813. 104. Long, N. J., Angew. Chem. Int. Ed. 1995, 34, 21-38; Powell, C. E.; Humphrey, M. G., Coord. Chem. Rev. 2004, 248, 725-756; Tao, C.-H.; Yang, H.; Zhu, N.; Yam, V. W.-W.; Xu, S.-J., Organometallics 2008, 27, 5453-5458. 105. Teo, B. K.; Xu, Y. H.; Zhong, B. Y.; He, Y. K.; Chen, H. Y.; Qian, W.; Deng, Y. J.; Zou, Y. H., Inorg. Chem. 2001, 40, 6794-6801. 106. Paul, F.; Lapinte, C., Coord. Chem. Rev. 1998, 178-180, 431-509; Albinati, A.; Fabrizi de Biani, F.; Leoni, P.; Marchetti, L.; Pasquali, M.; Rizzato, S.; Zanello, P., Angew. Chem. Int. Ed. 2005, 44, 5701-5705; Xu, G.-L.; Crutchley, R. J.; DeRosa, M. C.; Pan, Q.-J.; Zhang, H.-X.; Wang, X.; Ren, T., J. Am. Chem. Soc. 2005, 125, 13354-13363. 107. Yam, V. W.-W.; Lo, K. K.-W.; Wong, K. M.-C., J. Organomet. Chem. 1999, 578, 3-30; Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J., Adv. Mater. 1999, 11, 852-857. 108. Che, C.-M.; Chao, H.-Y.; Miskowski, V. M.; Li, Y.; Cheung, K.-K., J. Am. Chem. Soc. 2001, 123, 4985-4991; Lin, Y.-Y.; Lai, S.-W.; Che, C.-M.; Cheung, K.-K.; Zhou, Z.-Y., Organometallics 2002, 21, 2275-2282; Lu, W.; Zhu, N.; Che, C.-M., J. Am. Chem. Soc. 2003, 125, 16081-16088; Lo, W.-Y.; Lam, C.-H.; Yam, V. W.-W.; Zhu, N.; Cheung, K.-K.; Fathallah, S.; Messaoudi, S.; Le Guennic, B.; Kahlal, S.; Halet, J.-F., J. Am. Chem. Soc. 2004, 126, 7300-7310. 109. Yam, V. W.-W.; Choi, S. W.-K.; Cheung, K.-K., Organometallics 1996, 15, 1734-1739. 110. Brasse, C.; Raithby, P. R.; Rennie, M.-A.; Russell, C. A.; Steiner, A.; Wright, D. S., Organometallics 1996, 15, 639-644; Yam, V. W.-W.; Fung, W. K.-M.; Cheung, K.-K., Chem. Commun. 1997, 963-964; Zhao, L.; Chen, X.-D.; Mak, T. C. W., Organometallics 2008, 27, 2483–2489. 111. Yam, V. W.-W.; Lam, C.-H.; Zhu, N., Inorg. Chim. Acta 2002, 331, 239-245; Yip, S.-K.; Cheng, E. C.-C.; Yuan, L.-H.; Zhu, N.; Yam, V. W.-W., Angew. Chem. Int. Ed. 2004, 43, 4954-4957; Wei, Q.-H.; Zhang, L.-Y.; Shi, L.-X.; Chen, Z.-N., Inorg. Chem. Commun. 2004, 7, 286-288; Li, C.-K.; Lu, X.-X.; Wong, K. M.-C.; Chan, C.-L.; Zhu, N.; Yam, V. W.-W., Inorg. Chem. 2004, 43, 7421-7430; Vicente, J.; Chicote, M.-T.; Alvarez-Falcon, M. M.; Bautista, D., Organometallics 2004, 23, 5707-5712; Baxter, C. W.; Higgs, T. C.; Bailey, P. J.; Parsons, S.; McLachlan, F.; McPartlin, M.; Tasker, P. A., Chem. Eur. J. 2006, 12, 6166-6174; Vicente, J.; Gil-Rubio, J.; Barquero, N.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 646-659; Chen, M.-L.; Xu, X.-F.; Cao, Z.-X.; Wang, Q.-M., Inorg. Chem. 2008, 47, 1877-1879; Zang, S.-Q.; Mak, T. C. W., Inorg. Chem. 2008, 47, 7094-7105. 112. Abu-Salah, O. M., J. Organomet. Chem. 1998, 565, 211-216; Lang, H.; Kocher, S.; Back, S.; Rheinwald, G.; van Koten, G., Organometallics 2001, 20, 1968-1972; Yam, V. W.-W.; Cheung, K.-L.; Cheng, E. C.-C.; Zhu, N.; Cheung, K.-K., Dalton Trans. 2003, 1830-1835. 113. Wei, Q.-H.; Yin, G.-Q.; Zhang, L.-Y.; Shi, L.-X.; Mao, Z.-W.; Chen, Z.-N., Inorg. Chem. 2004, 43, 3484-3491. 114. Wei, Q.-H.; Zhang, L.-Y.; Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N., J. Am. Chem. Soc. 2004, 126, 9940-9941. 115. Wei, Q.-H.; Zhang, L.-Y.; Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N., Organometallics 2005, 24, 3818-3820; Vicente, J.; Chicote, M.-T.; Alvarez-Falcon, M. M.; Jones, P. G., Organometallics 2005, 24, 4666-4675; de la Riva, H.; Nieuwhuyzen, M.; Fierro, C. M.; Raithby, P. R.; Male, L.; Lagunas, M. C., Inorg. Chem. 2006, 45, 1418-1420; Yip, S.-K.; Chan, C.-L.; Lam, W. H.; Cheung, K.-K.; Yam, V. W.-W., Photochem. Photobiol. Sci. 2007, 6, 365-371; Tang, H.-S.; Zhu, N.; Yam, V. W.-W., Organometallics 2007, 26, 22-25; Koshevoy, I. O.; Koskinen, L.; Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A., Angew. Chem. Int. Ed. 2008, 47, 3942-3945. 116. Wei, Q.-H.; Yin, G.-Q.; Zhang, L.-Y.; Chen, Z.-N., Organometallics 2006, 25, 4941-4944. 117. Koshevoy, I. O.; Lin, Y.-C.; Karttunen, A. J.; Haukka, M.; Chou, P.-T.; Tunik, S. P.; Pakkanen, T. A., Chem. Commun. 2009, 2860–2862. 118. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Khodorkovskiy, M. A.; Pakkanen, T. A., Inorg. Chem. 2008, 47, 9478-9488. 119. Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Pakkanen, T. A., Organometallics 2009, 28, 1369-1376. 120. Koshevoy, I. O.; Lin, Y.-C.; Karttunen, A. J.; Chou, P.-T.; Vainiotalo, P.; Tunik, S. P.; Haukka, M.; Pakkanen, T. A., Inorg. Chem. 2009, 48, 2094-2102. 121. Abu-Salah, O. M.; Hussain, M. S.; Schlemper, E. O., J. Chem. Soc., Chem. Commun. 1988, 212-213. 122. Baldwin, R. A.; Cheng, M. T., J. Org. Chem. 1967, 32, 1572-1577. 123. Becke, A. D., Phys. Rev. A 1988, 3098-3100; Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200-1211; Perdew, J. P., Phys. Rev. B 1986, 33, 8822-8824. 124. Weigend, F.; Ahlrichs, R., Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. 125. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Theor. Chem. Acc. 1990, 77, 123-141. 126. Schäfer, A.; Horn, H.; Ahlrichs, R., J. Chem. Phys. 1992, 97, 2571-2577. 127. Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R., Chem. Phys. Lett. 1995, 240, 283-290; Sierka, M.; Hogekamp, A.; Ahlrichs, R., J. Chem. Phys. 2003, 118, 9136-9148; Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R., Theor. Chem. Acc. 1997, 97, 119-124; Weigend, F., Phys. Chem. Chem. Phys. 2006, 8, 1057-1065. 128. Reed, A. E.; Weinstock, R. B.; Weinhold, F., J. Chem. Phys. 1985, 83, 735-746. 129. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C., Chem. Phys. Lett. 1989, 62, 165-169. 130. Montes, J. A.; Rodríguez, S.; Fernández, D.; García-Seijo, M. I.; Gould, R. O.; García-Fernández, M. E., J. Chem. Soc., Dalton Trans. 2002, 1110–1118; Fernandez, D.; Garcia-Seijo, M. I.; Bardaji, M.; Laguna, A.; Garcia-Fernandez, M. E., Dalton Trans. 2008, 2633–2642. 131. Miller, P. W.; Nieuwenhuyzen, M.; Charmant, J. P. H.; James, S. L., Inorg. Chem. 2008, 47, 8367-8379. 132. Osawa, M.; Hoshino, M., Chem. Commun. 2008, 6384–6386. 133. Yang, C.-H.; Cheng, Y.-M.; Chi, Y.; Hsu, C.-J.; Fang, F.-C.; Wong, K.-T.; Chou, P.-T.; Chang, C.-H.; Tsai, M.-H.; Wu, C.-C., Angew. Chem. Int. Ed. 2007, 46, 2418–2421. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25999 | - |
| dc.description.abstract | z-scan量測技術(Chapter 1)主要是將一道雷射光沿著樣品移動方向(z軸)聚焦並同時偵測光強度的改變,通常光強度的變化會是樣品在z軸位置的函數。假設如果在偵測器前面加上一個窄孔(我們通常稱呼為閉孔式裝置),此時所偵測到的光強度變化會與光強度所造成的物質折射率改變相關,而物質折射率改變的會導致雷射光在焦點附近重新自聚焦或是自發散,這種現象主要是由三階非線性效應所引起。相對地,若偵測器前未加任何的孔並將所有的光都收集起來(我們通常稱呼為開孔式裝置),此時所偵測到穿透光的強度變化會反應因光強度變化所造成的物質雙光子吸收。由以上的實驗裝置,我們可以簡單、快速且精準地測量物質本身的三階非線性效應及其物理量。
在本論文中,我主要是研究一系列金(I)-銅(I)、金(I)-銀(I)與銀(I)-銅(I)之異種金屬錯合物的光物理性質,並且利用自己所架設的z-scan量測技術測量其雙光子吸收特性(Chapter 3-7)。這些異種金屬錯合物主要都是經由自組裝結合而成,其光物理性質主要是具有很強的磷光放光性質,原因主要是因為metal-to-ligand charge transfer包含了中心的重金屬原子(如金、銀與銅)用以增強spin-orbit coupling,並造成強的磷光放光。更重要的是在有氧的情形下,這些磷光不具有oxygen quenching的效應,主要原因是在外圍的取代基太過於龐大,可以有效的保護電子在三重激發態時,不會被氧氣經由碰撞的形式代謝掉能量。同時間,我們也量測這些錯合物的雙光子吸收,結果顯示這些樣品不但具有強的磷光同時也具有較大的雙光子吸收係數(與一般的染料比較)。結合磷光與雙光子吸收這兩種性質,可提供這些樣品應用於時間解析影像與雙光子顯微技術的機會。 | zh_TW |
| dc.description.abstract | The z-scan technique involves moving a sample along the path of a focused laser beam and measuring the light intensity at the detector as a function of its position along this z-axis (Chapter 1). If the detector has a narrow aperture (as in the so called “closed-aperture” setup), then the output is sensitive to intensity-dependent changes in the refractive index (as a result of third-order nonlinear polarizability or thermal effects) which lead to self-focusing or defocusing of the beam. Alternatively, if the detector collects all the light from the sample (“open-aperture” setup), then the output only reflects the intensity-dependent transmission, and can be used to measure two-photon absorption cross-sections.
In this thesis, we studied the photophysical property and two-photon absorption cross-section for a series of AuI-CuI, AuI-AgI and AgI-CuI heterometallic alkynyl-diphosphine (diphosphine = PPh2-(C6H4)n-PPh2, n = 1, 2, 3) clusters (Chapter 3-7), which display a very intriguing structural pattern based on the heterometallic [AuxMy(C2Ph)2x]y-x fragments “wrapped” by the [Au3(diphosphine)3]3+ “belts”. As results, these complexes exhibit large two-photon absorption cross-sections and intense phosphores due to the transition involving metal-ligand charge transfer such that the heavy metal (Au) enhances spin-orbit coupling. More importantly, owing to fully protected chromophore by the bulky ancillary and bridging ligands, the phosphorescence is nearly inert to oxygen quenching. In combination the intensive phosphorescence intensity, minor O2 quenching property and the two-photon absorption property demonstrate these compounds with promising potential in two-photon emission imaging as well as phosphorescence dyes in time-resolved imaging. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:58:16Z (GMT). No. of bitstreams: 1 ntu-98-R96223123-1.pdf: 4468121 bytes, checksum: 87476d6143b8282447bbd0138ea99c10 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV FIGURE CAPTIONS A SCHEME CAPTIONS I TABLE CAPTIONS J CHAPTER 1. EXPERIMENTAL SETUP OF OPEN-APERTURE Z-SCAN TECHNIQUE 1 1.1 Introduction 1 1.2 Experimental Setup and Automation of Open-Aperture Z-scan Technique 3 1.2.1 Experimental Setup of Open-Aperture Z-scan Technique 3 1.2.2 Automation of Open-Aperture Z-scan Technique by LabVIEW 4 1.3 Analysis of Z-scan for a Thin Nonlinear Medium 9 1.4 Experimental Results and Discussion 14 1.5 Conclusion 16 1.6 References 17 CHAPTER 2. PRINCIPLES OF OPERATION AND INSTRUMENTATION 18 2.1 Introduction 18 2.2 Steady-State Spectroscopy 18 2.2.1 Absorption of UV-visible Light and the Beer-Lambert Law 18 2.2.2 Emission Spectra 24 2.2.3 Excitation Spectra 31 2.3 Measurement of emission quantum yields 32 2.4 Time-correlated single photon counting 36 2.5 Two-photon induced emission (TPIE) method. 43 2.6 References 47 CHAPTER 3. INTENSELY LUMINESCENT ALKYNYL- PHOSPHINE GOLD(I)-COPPER(I) COMPLEXES: SYNTHESIS, CHARACTERIZATION, PHOTOPHYSICAL AND COMPUTATIONAL STUDIES 49 3.1 Abstract 49 3.2 Introduction 50 3.3 Experimental Section 52 3.3.1 General comments 52 3.3.2 General procedure for the preparation of heterometallic Au-Cu complexes. 53 3.3.3 Photophysical measurements 53 3.3.4 Computational details 54 3.4 Results and Discussion 55 3.4.1 Synthesis and characterization 55 3.4.2 Photophysical properties 63 3.4.3 Computational results 68 3.5 Conclusion 74 3.6 References 75 CHAPTER 4. STUDIES OF TWO-PHOTON PROPERTY OF INTENSELY LUMINESCENT ALKYNYL- PHOSPHINE GOLD(I)-COPPER(I) COMPLEXES 79 4.1 Abstract 79 4.2 Introduction 80 4.3 Experimental Section 83 4.3.1 Materials 83 4.3.2 Steady-state measurements. 84 4.3.3 Two-photon induced emission (TPIE) method. 84 4.3.4 Open-aperture Z-scan method. 86 4.4 Results and discussion 89 4.4.1 Steady-State Spectra 89 4.4.2 TPIE measurements 92 4.4.3 Z-scan measurements 96 4.4.4 Discussions 97 4.5 Conclusion 101 4.6 References 102 CHAPTER 5. INTENSELY, OXYGEN INDEPENDENT PHOSPHORESCENT GOLD(I)-SILVER(I) COMPLEX: “TRAPPING” AN AU8AG10 OLIGOMER BY TWO GOLD-ALKYNYL-DIPHOSPHINE MOLECULES 108 5.1 Abstract 108 5.2 Introduction 109 5.3 Experimental Section 109 5.3.1 General comments 109 5.3.2 General procedure for the preparation of heterometallic Au-Ag complexes 110 5.3.3 Photophysical measurements 112 5.3.4 Computational details 113 5.4 Results and discussion 114 5.4.1 Synthesis and characterization 114 5.4.2 Photophysical properties 120 5.4.3 Computational results 124 5.4.4 Two-photon absorption properties 127 5.5 Conclusion 129 5.6 References 130 CHAPTER 6. A LUMINESCENT AU(I)–AG(I) ALKYNYL- DIPHOSPHINE AGGREGATE: A REDUCTIVE FUSION OF TWO HETEROMETALLIC CLUSTERS 134 6.1 Abstract 134 6.2 Introduction 134 6.3 Experimental Section 135 6.3.1 Photophysical measurements 135 6.3.2 Computational details 136 6.4 Results and discussion 137 6.4.1 Synthesis and characterization 137 6.4.2 Photophysical properties 140 6.4.3 Computational results 142 6.4.4 Two-photon absorption properties 144 6.5 Conclusion 146 6.6 References 147 CHAPTER 7. SYNTHESIS, PHOTOPHYSICAL AND THEORETICAL STUDIES OF LUMINESCENT SILVER(I)−COPPER(I) ALKYNYL-DIPHOSPHINE COMPLEXES 151 7.1 Abstract 151 7.2 Introduction 152 7.3 Experimental Section 154 7.3.1 General comments 154 7.3.2 General procedure for the preparation of heterometallic Ag-Cu complexes 154 7.3.3 Photophysical measurements 157 7.3.4 Computational details 158 7.4 Results and discussion 158 7.4.1 Synthesis and characterization 158 7.4.2 Photophysical properties 167 7.4.3 Computational results 173 7.5 Conclusion 178 7.6 References 179 | |
| dc.language.iso | en | |
| dc.title | 架設Z-Scan量測技術並應用於強放光之異種金屬錯合物的雙光子吸收研究 | zh_TW |
| dc.title | Set-up of Z-scan Technique and Its Application in Two-photon Absorption of Heterometallic Complexes with Intensive Luminescence | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林萬寅,何美霖 | |
| dc.subject.keyword | Z-scan量測技術,雙光子吸收,異種金屬錯合物,金(I)-銅(I)錯合物,金(I)-銀(I)錯合物,銀(I)-銅(I)錯合物, | zh_TW |
| dc.subject.keyword | Z-scan technique,two-photon absorption,heterometallic complexes,Au(I)-Cu(I) complexes,Au(I)-Ag(I) complexes,Ag(I)-Cu(I) complexes, | en |
| dc.relation.page | 184 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-08 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
