Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25998
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周必泰
dc.contributor.authorChing-Ting Chenen
dc.contributor.author陳敬亭zh_TW
dc.date.accessioned2021-06-08T06:58:15Z-
dc.date.copyright2009-07-21
dc.date.issued2009
dc.date.submitted2009-07-08
dc.identifier.citationChapter One:
1. (a) B. O’Regan, M. Grätzel, Nature 1991, 335, 737. (b) M. Grätzel, Nature 2001, 414, 338.
2. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
3. C.J. Brabec, N.S. Sariciftci, Mater. Today 2000, 3.
4. J.J.M. Halls, K. Pickler, R.H. Friend, S.C. Morati, A.B. Holmes,
Nature 1995, 376, 498.
5. K. Tennakone, G.R.R. Kumara, I.R.M. Kottegoda, V.S.P. Perera,
Chem. Commun. 1999, 15.
6. K. Sayama, H. Suguhara, H. Arakawa, Chem. Mater. 1998, 10, 3825.
7. N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel, J. Am. Chem.
Soc. 1988, 110, 1216.
8. S.D. Burnside, V. Shklover, Ch. Barbé, P. Comte, F. Arendse, K.
Brooks, M. Grätzel, Chem. Mater. 1998, 10, 2419.
9.V. Shklover, Unpublished HRTEM results.
10. U. Bach, Y. Tachibana, J.-E. Moser, S.A. Haque, J.R. Durrant, M.
Grätzel, D.R. Klug, J. Am. Chem. Soc. 1999,121, 7445.
11. S. Pelet, J.-E. Moser, M. Grätzel, J. Phys. Chem. B 2000, 104 ,
1791.
12. L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, J. Phys. Chem. B 1997, 101,10281.
13. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
14. G. Benko, J. Kallioinen, J.E.I. Korppi-Tommola, A.P. Yartsev, V.
Sundstrom, J. Am. Chem. Soc. 2002, 124, 489.
15. H. Nusbaumer, J.-E. Moser, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, J. Phys. Chem. B 2001, 105, 10461.
16. M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
17. T. Renouard, R.-A. Fallahpour, Md.K. Nazeeruddin, R. Humphry-Baker, S.I. Gorelsky, A.B.P. Lever, M. Grätzel, Inorg. Chem.2002, 41, 367.
18. Md.K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil, G. Schneider, A. Hirth, N. Trombach, J. Porphyrins Phthalocyanines 2000, 3, 230.
19. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, Chem. Commun. 2001, 569.
20. K. Hara, M. Kurashigo, Y. Dan-oh, C. Kasasa, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, N. J. Chem. 2000, 27, 783.
21. J. Fang, L. Su, J. Wu, Y. Shen, Z. Lu, N. J. Chem. 1997, 270, 145.
22. R. Plass, S. Pelet, J. Krüger, M. Grätzel, U. Bach, J. Phys. Chem. B 2002, 106, 578.
23. Nelson, J. Phys. Rev. B 1999, 59,15374.
24. J. Van de Lagemaat, N.G. Park, A.J. Frank, J. Phys. Chem. B 2000, 104 , 2044.
25. L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, J. Phys. Chem. B 1997, 101, 10281.
26. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida, Electrochem. Commun. 2003, 5, 804.
27. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 2003, 15 , G488.
28. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc. 2003, 125, 12384.
29. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 2002, 295, 242.
30. V. Shklover, Y.E. Ovchinnikov, L.S. Braginsky, S.M. Zakeeruddin, M. Grätzel, Chem. Mater. 1998, 10, 2533.
31. A. Vittadini, A. Seloni, F.P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 1998, 81, 2954.
32. A.M. Bond, G.B. Deacon, J. Howitt, D.R. MacFarlane, L. Spiccia,
G. Wolfbauer, J. Electrochem. Soc. 1999, 146, 648.
33. R. Grünwald, H. Tributsch, J. Phys. Chem. B 1997, 101, 2564.
34. A. Hinsch, J.M. Kroon, M. Späth, J.A.M. Roosmalen, N.J. Bakker, P. Sommeling, N. van der Burg, P. Kinderman, R. Kern, J. Ferber, C. Schill, M. Schubert, A. Meyer, T. Meyer, I. Uhlendorf, J. Holzbock, R. Niepmann, in: Proceedings of the 16th European PV Solar Energy Conference, Glasgow, May 2000, p. 32.
35. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater.2003, 2, 402.
36. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhˆote, H. Pettersson, A. Azam, M. Grätzel, J. Electrochem. Soc. 1996, 143, 3099.
37. S. Murai, S. Mikoshiba, H. Sumino, T. Kato, S. Hayase, Chem. Commun. 2003, 1534.
38. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem. Commun. 2002, 374.
39. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chem. Lett. 2001, 26.
40. P. Wang, S.M. Zakeeruddin, I. Exnar, M. Grätzel, Chem. Commun. 2002, 2972.
41. P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc. 2003, 125, 1166.
Chapter Two:
1. M. Haruta, Chem. Rev. 2003, 103, 75.
2. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, A. Piryatinski, Nature 2007, 447, 441.
3. a) I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, Science 2005, 310, 462; b) M. Gr_tzel, Inorg. Chem. 2005, 44, 6841.
4. a) X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969; b) C. S_nnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, Nat. Biotechnol. 2005, 23, 741; c) S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Acc. Chem. Res. 2008, DOI: 10.1021/ar800018v.
5. a) M. Vallet-Reg, F. Balas, D. Arcos, Angew. Chem. 2007, 119, 7692; Angew. Chem. Int. Ed. 2007, 46, 7548; b) L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad, Clin. Pharmacol. Ther. 2008, 83, 761.
6. W. R. Entley, G. S. Girolami, Science 1995, 268, 397.
7. a) S. Vaucher, M. Li, S. Mann, Angew. Chem. 2000, 112, 1863; Angew. Chem. Int. Ed. 2000, 39, 1793; b) S. Vaucher, J. Fielden, M. Li, E. Dujardin, S. Mann, Nano Lett. 2002, 2, 225; c) L. Catala, T. Gacoin, J. P. Boilot, E. Riviere, C. Paulsen, E. Lhotel, T. Mallah, Adv. Mater. 2003, 15, 826; d) T. Uemura, S. Kitagawa, J. Am. Chem. Soc. 2003, 125, 7814; e) P. A. Fiorito, V. R. Goncales, E. A. Ponzio, S. I. C. de Torresi, Chem. Commun. 2005, 366; f) M. Taguchi, K. Yamada, K. Suzuki, O. Sato, Y. Einaga, Chem. Mater. 2005, 17, 4554; g) T. Uemura, S. Kitagawa, Chem. Lett. 2005, 34, 132.
8. a) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388; Angew. Chem. Int. Ed. 2004, 43, 2334; b) C. Wu, W. Lin, Angew. Chem. 2007, 119, 1093; Angew. Chem. Int. Ed. 2007, 46, 1075; c) O. R. Evans,W. Lin, Acc. Chem. Res. 2002, 35, 511.
9. X. P. Sun, S. J. Dong, E. K. Wang, J. Am. Chem. Soc. 2005, 127, 13102.
10. K. H. Park, K. Jang, S. U. Son, D. A. Sweigart, J. Am. Chem. Soc. 2006, 128, 8740.
11. a) A. Hu, H. L. Ngo, W. Lin, Angew. Chem. 2003, 115, 6182; Angew. Chem. Int. Ed. 2003, 42, 6000; b) A. Hu, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2003, 125, 11490.
12. a) M. Oh, C. A. Mirkin, Nature 2005, 438, 651; b) M. Oh, C. A. Mirkin, Angew. Chem. 2006, 118, 5618; Angew. Chem. Int. Ed. 2006, 45, 5492.
13. W. J. Rieter, K. M. Pott, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2008, 130, 11584.
14. H. Maeda, M. Hasegawa, T. Hashimoto, T. Kakimoto, S. Nishio, T. Nakanishi, J. Am. Chem. Soc. 2006, 128, 10024.
15. I. Imaz, D. Maspoch, C. Rodriguez-Blanco, J. M. Perez-Falcon, J. Campo, D. Ruiz-Molina, Angew. Chem. 2008, 120, 1883; Angew. Chem. Int. Ed. 2008, 47, 1857.
16. W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2006, 128, 9024.
17. K. M. L. Taylor, W. J. Rieter, W. Lin, J. Am. Chem. Soc. 2008, 130, 14358.
18. E. Coronado, J. R. Galan-Mascaros, M. Monrabal-Capilla, J. Garcia-Martinez, P. Pardo-Ibanez, Adv. Mater. 2007, 19, 1359.
19. K. M. L. Taylor, A. Jin, W. Lin, Angew. Chem. 2008, 120, 7836 ; Angew. Chem. Int. Ed. 2008, 47, 7722.
20. S. Jung, M. Oh, Angew. Chem. 2008, 120, 2079; Angew. Chem. Int. Ed. 2008, 47, 2049.
21. I. Boldog, A. B. Gaspar, V. Mart_nez, P. Pardo-Ibanez, V. Ksenofontov, A. Bhattacharjee, P. Gutlich, J. A. Real, Angew. Chem. 2008, 120, 6533; Angew. Chem. Int. Ed. 2008, 47, 6433.
22. W. J. Rieter, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2007, 129, 9852.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25998-
dc.description.abstract在未來需要實際應用光敏化太陽能電池時,價格適當的有機敏化染料會在大量生產上扮演一個重要的角色。因此在本篇論文中,我們設計了一個新型的有機染料 1 (Scheme 2-1),這種染料是利用sonogashira 耦合反應來形成中間的連結,而主要的Salen核心則是應用醛和氨基的imination形成。Salen核心可用來和金屬做配位,藉此達到降低LUMO以令染料的吸收光譜有紅位移的現象。1 and Zn(II)/1 做成光敏化太陽能電池後,在標準AM 1.5的太陽光下,得到的光電流分別是2.51 和 0.49 mA/cm2,開路電壓則是 654 和 734 mV, 填充率是 0.72 和 0.67,轉換效率分別是1.20% 和 0.24%。配位上金屬的染料效率反而差的原因可能是金屬不只配位到Salen的核心,還和負責吸附於二氧化鈦上的酸做配位,因而干擾了染料的吸附。
  另一部分則是我們將醋酸鋅和N,N’-dicyanoethenebis (salicylideneimine) dicarboxylic acid溶在dimethyl sulfoxide 或dimethyl formaide中,再利用簡單的水熱法合成配位聚合物粒子。我們利用時間解析掃瞄電子顯微鏡去研究其生長的機制,及粒子生長的因素,像是溶劑或是本身有順式和反式兩種異構物對粒子的大小及形狀的影響。
zh_TW
dc.description.abstractCost-effective organic sensitizers will play an important role in the future large-scale production and application of dye-sensitized solar cells. A new organic dye 1 featuring Salen Schiff base core has synthesized via sonogashira coupling reaction and imination. The Salen core can coordinate with metal, which would lower the LUMO and result red shift in absorption. 1 and Zn(II)/1 sensitized solar cells yield a short-circuit photocurrent density of 2.51 and 0.49 mA/cm2, an open-circuit voltage of 654 and 734 mV, and a fill factor of 0.72 and 0.67, corresponding to an overall conversion efficiency of 1.20% and 0.24% under standard AM 1.5 sun light, respectively. The metal which coordinates to Salen core might bind to the carboxylic acid, which plays the role of anchoring group. This would interfere in the dye absorption on TiO2, which resulted in a terrible performance in dye-sensitized solar cell. However, solar cell performances are not solely driven by the energy levels of the materials. Clearly, the molecular weight and the overall organization of dyes are other important key parameters to consider when developing new dye for solar cells.
Coordination polymer particles (CPPs) were synthesized by a simple solvothermal reaction of Zinc acetate and N,N’-dicyanoethenebis (salicylideneimine)dicarboxylic acid in dimethyl sulfoxide or dimethyl formaide. The growth mechanism was investigated by time-dependent scanning electron microscope. And the factors, solvents and cis-trans isomerization, which would vary the particle size and conformations, were studied.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:58:15Z (GMT). No. of bitstreams: 1
ntu-98-R96223136-1.pdf: 9813800 bytes, checksum: e36d06c390308f246f79bf5223a144f1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
摘要 i

Abstract ii

Chapter One: Tuning the Energy Level of Organic Sensitizers for Dye-sensitized Solar Cell 1
1.1: Introduction 1
1.1.1 The operation principle of the dye-sensitized solar cell 3
1.1.2 Historical background 6
1.1.3 The choice of sensitizer 8
1.1.3.1 Panchromatic sensitizer 11
1.1.3.2 Organic dyes 16
1.2 Result and Discussion 18
1.2.1 Design and Synthesis 18
1.2.2 Experimental Section 22
1.2.3 Device Performance 53
1.3: Conclusion 59
1.4 References: 60
Chapter Two: The Study in Morphology of Coordination Polymer Particles 65
2.1 Introduction 65
2.1.2 Classification of Nanoscale Coordination Polymers 69
2.1.2.1 Amorphous Nanoscale Coordination Polymers 69
2.1.2.2 Nanoscale Metal-Organic Frameworks 74
2.1.3 Formation Mechanism 80
2.1.4 The Applications 90
2.1.4.1 Heterogeneous Catalysis 91
2.1.4.2 Spin-Crossover 92
2.1.4.3 Templating with NMOFs 93
2.1.4.4 Biosensing and Multimodal Imaging 96
2.1.4.5 Drug Delivery 101
2.2 Result and Discussion 104
2.2.1 The Synthesis 104
2.2.2 The Properties and Characterization 119
2.2.3 Shape Regulation 126
2.2.3.1 Solvent 127
2.2.3.2. Cis-trans Isomerization 129
2.3 Conclusion 146
2.4 References 147
dc.language.isoen
dc.title1.調控有機感光染料在光敏化太陽能電池的能階
2.金屬有機配位聚合物形態學之研究
zh_TW
dc.title1. Tuning the Energy Level of Organic Sensitizers for Dye-sensitized Solar Cell
2. The Study in Morphology of Coordination Polymer Particles
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林萬寅,何美霖
dc.subject.keyword染料,太陽能電池,配位聚合物,形態學,zh_TW
dc.subject.keyworddye,solar cell,coordination polymer,morphology,en
dc.relation.page149
dc.rights.note未授權
dc.date.accepted2009-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
9.58 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved