請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡蔭和(Inn-Ho Tsai) | |
| dc.contributor.author | An-Chun Cheng | en |
| dc.contributor.author | 鄭安惇 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:58:05Z | - |
| dc.date.copyright | 2009-07-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-10 | |
| dc.identifier.citation | 1. Yamazaki Y, Morita T. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity. Curr Pharm Des. 2007; 13: 2872-2886.
2. Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and Hemostasis. J Thromb Haemost. 2005; 3: 1791-1799. 3. Kalafatis M, Beck DO, Mann KG. Structural requirements for expression of factor Va activity. J Biol Chem. 2003; 278: 33550-33561. 4. Rao VS, Swarup S, Manjunatha Kini R. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structurally similar to mammalian blood coagulation factor Xa. Thromb Haemost. 2004; 92: 509-521. 5. Gempeler-Messina PM, Volz K, Buhler B, Muller C. Protein C activators from snake venoms and their diagnostic use. Haemostasis. 2001; 31: 266-272. 6. Parry MA, Jacob U, Huber R, Wisner A, Bon C, Bode W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure. 1998; 6: 1195-1206. 7. Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998; 36: 1749-1800. 8. Tans G, Rosing J. Snake venom activators of factor X: an overview. Haemostasis. 2001; 31: 225-233. 9. Rosing J, Tans G. Structural and functional properties of snake venom prothrombin activators. Toxicon. 1992; 30: 1515-1527. 10. Jia LG, Shimokawa K, Bjarnason JB, Fox JW. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon. 1996; 34: 1269-1276. 11. Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000; 82: 841-850. 12. Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003; 42: 827–840. 13. Banerjee Y, Mizuguchi J, Iwanaga S, Kini RM. Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem. 2005; 280: 42601-42611. 14. Doley R, Pahari S, Mackessy SP, Kini RM. Accelerated exchange of exon segments in Viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert Massasauga). BMC Evol Biol. 2008; 8: 196-207. 15. Du XY, Clemetson KJ. Snake venom L-amino acid oxidases. Toxicon. 2002; 40: 659-665. 16. Nathan I, Dvilansky A, Yirmiyahu T, Aharon M, Livne A. Impairment of platelet aggregation by Echis colorata venom mediated by L-amino acid oxidase or H2O2. Thromb Haemost. 1982; 48: 277-282. 17. McLane MA, Marcinkiewicz C, Vijay-Kumar S, Wierzbicka-Patynowski I, Niewiarowski S. Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 1998; 219: 109-119. 18. Yeh CH, Peng HC, Yang RS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective αvβ3 blockade of endothelial cells. Mol Pharmacol. 2001; 59: 1333-1342. 19. Clemetson KJ, Navdaev A, Dormann D, Du XY, Clemetson JM. Multifunctional snake C-type lectins affecting platelets. Haemostasis. 2001; 31: 148-154. 20. Andrews RK, Gardiner EE, Berndt MC. Snake venom toxins affecting platelet function. Methods Mol Biol. 2004; 273: 335-348. 21. Yeh CH, Wang WC, Hsieh TT, Huang TF. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J Biol Chem. 2000; 275: 18615-18618. 22. Zupunski V, Kordis D, Gubensek F. Adaptive evolution in the snake venom Kunitz/BPTI protein family. FEBS Lett. 2003; 547:131-136. 23. Cardle L, Dufton MJ. Foci of amino acid conservation in the 3D structures of the Kunitz BPTI proteinase inhibitors: how do variants from snake venom differ? Protein Eng. 1997; 10: 131-136. 24. Harvey AL. Twenty years of dendrotoxins. Toxicon. 2001; 39: 15-26. 25. Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunski M. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A. 1994; 91: 878-882. 26. Petersen M, Penner R, Pierau FK, Dreyer F. Beta-bungarotoxin inhibits a non-inactivating potassium current in guinea pig dorsal root ganglion neurones. Neurosci Lett. 1986; 68: 141-145. 27. Shafqat J, Zaidi ZH, Jörnvall H. Purification and characterization of a chymotrypsin Kunitz inhibitor type of polypeptide from the venom of cobra (Naja naja naja). FEBS Lett. 1990; 275: 6-8. 28. Masci PP, Whitaker AN, Sparrow LG, de Jersey J, Winzor DJ, Watters DJ, Lavin MF, Gaffney PJ. Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul Fibrinolysis. 2000; 11: 385-393. 29. Flight S, Johnson L, Trabi M, Gaffney P, Lavin M, de Jersey J, Masci P. Comparison of textilinin-1 with aprotinin as serine protease inhibitors and as antifibrinolytic agents. Pathophysiol Haemost Thromb. 2005; 34: 188-193. 30. Nathan DG, Orkin SH, Ginsburg D, Look TA. Nathan and Oski’s hematology of infancy and childhood (6th edition). 2003; Philadelphia: Saunders. 31. Hoffbrand AV, Catovsky D, Tuddenham E. Postgraduate haematology (5th edition). 2005; Malden, MA: Blackwell. 32. Riddel JP Jr, Aouizerat BE, Miaskowski C, Lillicrap DP. Theories of blood coagulation. J Pediatr Oncol Nurs. 2007; 24: 123-131. 33. Orfeo T, Brufatto N, Nesheim ME, Xu H, Butenas S, Mann KG. The factor V activation paradox. J Biol Chem. 2004; 279: 19580-19591. 34. Loscalzo JSAI. Thrombosis and hemorrhage (3rd edition). 2003; Philadelphia: Lippincott Williams & Wilkins. 35. Hoffbrand AV, Pettit JE, Moss PAH. Essential Haematology (4th edition). 2005; Malden, MA: Blackwell. 36. Harmening DM. Clinical hematology and fundamentals of hemostasis. 2002; Philadelphia: F. A. Davis. 37. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005; 129: 307-321. 38. Hajjar KA. The molecular basis of fibrinolysis. In: Hematology of Infancy and Childhood. 2003; Philadelphia: Saunders. 39. Goldsmith GH Jr, Saito H, Ratnoff OS. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments. J Clin Invest. 1978; 62: 54-60. 40. Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun. 1969; 35: 273-279. 41. Joseph K, Kaplan AP. Formation of bradykinin: a major contributor to the innate inflammatory response. Adv Immunol. 2005; 86: 159-208. 42. Kaplan AP. Hageman factor-dependent pathways: mechanism of initiation and bradykinin formation. Fed Proc. 1983; 42: 3123-3127. 43. Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007; 62: 842-856. 44. Venema VJ, Ju H, Sun J, Eaton DC, Marrero MB, Venema RC. Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma 1 in vascular endothelial cells. Biochem Biophys Res Commun. 1998; 246: 70-75. 45. Fleming I, Busse R. Tyrosine phosphorylation and bradykinin-induced signaling in endothelial cells. Am J Cardiol. 1997; 80: 102A-109A. 46. Adams DJ, Barakeh J, Laskey R, Van BC. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989; 3: 2389-2400. 47. Martin TW, Wysolmerski RB. Ca2+-dependent and Ca2+-independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells. J Biol Chem. 1987; 262: 13086-13092. 48. Ju H, Venema VJ, Liang H, Harris MB, Zou R, Venema RC. Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae. Biochem J. 2000; 351: 257-264. 49. Klabunde, RE. Cardiovascular Physiology Concepts. 2005; Philadelphia: Lippincott Williams & Wilkins. 50. Bracho FA. Hereditary angioedema. Curr Opin Hematol. 2005; 12: 493-498. 51. Yang HY, Erdös EG, Levin Y. Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J Pharmacol Exp Ther. 1971; 177: 291-300. 52. Jaspard E, Wei L, Alhenc-Gelas F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Biol Chem. 1993; 268: 9496-9503. 53. Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol. 2003; 285: R1-R13. 54. Chen HS, Chen JM, Lin CW, Khoo KH, Tsai IH. New insights into the functions and N-glycan structures of factor X activator from Russell's viper venom. FEBS J. 2008; 275: 3944-3958. 55. Smith AA, Jacobson LJ, Miller BI, Hathaway WE, Manco-Johnson MJ. A new euglobulin clot lysis assay for global fibrinolysis. Thromb Res. 2003; 112: 329-337. 56. Takeya H, Nishida S, Miyata T, Kawada S, Saisaka Y, Morita T, Iwanaga S. Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem. 1992; 267: 14109-14117. 57. Kini RM, Banerjee Y. Dissection approach: a simple strategy for the identification of the step of action of anticoagulant agents in the blood coagulation cascade. J Thromb Haemost. 2005; 3: 170-171. 58. Reddigari SR, Shibayama Y, Brunnée T, Kaplan AP. Human Hageman factor (factor XII) and high molecular weight kininogen compete for the same binding site on human umbilical vein endothelial cells. J Biol Chem. 1993; 268: 11982-11987. 59. Ho DH, Baglia FA, Walsh PN. Factor XI binding to activated platelets is mediated by residues R(250), K(255), F(260), and Q(263) within the apple 3 domain. Biochemistry. 2000; 39: 316-323. 60. Scott CF, Colman RW. Function and immunochemistry of prekallikrein-high molecular weight kininogen complex in plasma. J Clin Invest. 1980; 65: 413-421. 61. Sakata Y, Curriden S, Lawrence D, Griffin JH, Loskutoff DJ. Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity. Proc Natl Acad Sci USA. 1985; 82: 1121-1125. 62. Markosyan RA, Suvorov AV. Effect of bradykinin on platelet aggregation. Bulletin of Experimental Biology and Medicine. 1979; 88; 826-827. 63. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor. Nature. 1987; 327: 524-526. 64. Hong SL. Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein. Thromb Res. 1980; 18: 787-795. 65. Schmaier AH. The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. J Clin Invest. 2002; 109: 1007-1009. 66. Murphey LJ, MalaveHA, Petro J, Biaggioni I, Byrne DW, Vaughan DE, Luther JM, Pretorius M, Brown NJ. Bradykinin and its metabolite bradykinin 1-5 inhibit thrombin-induced platelet aggregation in humans. J Pharmacol Exp Ther. 2006; 318: 1287-1292. 67. Hasan AA, Amenta S, Schmaier AH. Bradykinin and its metabolite, Arg-Pro-Pro-Gly-Phe, are selective inhibitors of alpha-thrombin-induced platelet activation. Circulation. 1996; 94:517-528. 68. Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997; 100: 350-356. 69. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, kininases. Pharmacol Rev. 1992; 44: 1-80. 70. Iwaki T, Castellino FJ. Plasma levels of bradykinin are suppressed in factor XII-deficient mice. Thromb Haemost. 2006; 95: 1003-1010. 71. Schousboe I. Pharmacological regulation of factor XII activation may be a new target to control pathological coagulation. Biochem Pharmacol. 2008; 75: 1007-1013. 72. Scott CF, Silver LD, Purdon AD, Colman RW. Cleavage of human high molecular weight kininogen by factor XIa in vitro. Effect on structure and function. J Biol Chem. 1985; 260: 10856-10863. 73. Renné T, Dedio J, David G, Müller-Esterl W. High molecular weight kininogen utilizes heparan sulfate proteoglycans for accumulation on endothelial cells. J Biol Chem. 2000; 275: 33688-33696. 74. Renné T, Schuh K, Müller-Esterl W. Local bradykinin formation is controlled by glycosaminoglycans. J Immunol. 2005; 175: 3377-3385. 75. Thompson RE, Mandle R Jr, Kaplan AP. Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest. 1977; 60: 1376-1380. 76. Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. 2000; 404: 518-525. 77. Esmon CT. The normal role of Activated Protein C in maintaining homeostasis and its relevance to critical illness. Crit Care. 2001; 5: S7-12. 78. Cleary DB, Ehringer WD, Maurer MC. Establishing the inhibitory effects of bradykinin on thrombin. Arch Biochem Biophys. 2003; 410: 96-106. 79. Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis AE 3rd. Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest. 2002; 109: 1057-1063. 80. Bas M, Hoffmann TK, Kojda G. Evaluation and management of angioedema of the head and neck. Curr Opin Otolaryngol Head Neck Surg. 2006; 14: 170-175. 81. Bos IG, Hack CE, Abrahams JP. Structural and functional aspects of C1-inhibitor. Immunobiology. 2002; 205: 518-533. 82. Davis AE 3rd, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008; 45: 4057-4063. 83. Hermans JM, Stone SR. Interaction of activated protein C with serpins. Biochem J. 1993; 295: 239-245. 84. Mahdy AM, Webster NR. Perioperative systemic haemostatic agents. Br J Anaesth. 2004; 93: 842-858. 85. Mangano DT, Tudor IC, Dietzel C; Multicenter Study of Perioperative Ischemia Research Group; Ischemia Research and Education Foundation. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006; 354: 353-365. 86. Vogel R. Kallikrein inhibitors, in: Handbook of Experimental Pharmacology, Supplement: Bradykinin, Kallidin and Kallikrein, Supplement. E. G. Erdös (edition). 1979; Springer-Verlag: Berlin. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25988 | - |
| dc.description.abstract | 目前已知許多蛇毒中含有可以干擾正常凝血作用(hemostasis)的物質。很多這類的蛇毒蛋白已經被證明具有分子研究及臨床應用的價值;然而對於蛇毒中Kunitz-type蛋白酶抑制劑的功能以及毒理意義仍然有許多需要釐清並深入探討的必要性。在本研究論文中,我們從來自巴基斯坦的鎖鍊蛇(學名: Daboia russelii russelii)的毒液中分離並純化出其中兩種Kunitz-type蛋白酶抑制劑,稱之為DrKIn-I以及DrKIn-II,其分子量分別為7550以及6940。凝血試驗(APTT, PT, TT及ST tests)的實驗中我們發現到DrKIn-I以及DrKIn-II均可以明顯抑制凝血的內因途徑(intrinsic pathway),而且使用多種缺乏單一凝血因子的血漿(factor deficient plasma)去檢驗後,我們證明了DrKIn-I以及DrKIn-II主要是透過讓FXII失去活性進而導致抑制內因途徑之進行。我們從水解酵素的活性試驗(amidolytic activity assay)的實驗中證明DrKIn-I相較於DrKIn-II,具有更高的專一性可以去抑制FXIIa以及FXIa;而DrKIn-II則是比 DrKIn-I具有較高的專一性去抑制血漿活化蛋白釋放酶(plasma kallikrein),血纖維蛋白溶酶(plasmin)以及活化的蛋白C (activated protein C)。本研究中我們將不同量的DrKIn-I加入人類血漿中反應後,發現隨著DrKIn-I處理的濃度提高,可以更有效地降低血管舒緩激肽(bradykinin)的產生,而且這樣降低的現象同時伴隨著有更多的ADP所引起的血小板聚集以及血管通透性的降低 (以之此胜肽具抗血小板聚集作用)。我們發現血小板的促凝集效應是由於細胞內的cyclic AMP量減少所造成。另外7 nM的DrKIn-I可幾乎完全抑制thrombin-thrombomodulin所引起protein C的活化,而在小鼠的活體實驗中,同時給予RVV-X和DrKIn-I可明顯降低血中fibrinogen的濃度。當我們從另一個角度去探討DrKIn-II的功能時,雖然我們觀察到DrKIn-II只能部分降低血管舒緩激肽的產生或protein C的活化,但將DrKIn-II加入優球蛋白(euglobulin fraction)中反應後,我們觀察到血塊溶解時間(clot lysis time)有明顯延長的現象。為了更進一步確認DrKIn-II是可以抑制血栓溶解(anti-fibrinolysis),我們進行了小鼠的活體實驗,相較只給予RVV-X處理的組別,同時給予RVV-X和DrKIn-II的組別可以更明顯地減少fibrinogen/fibrin degradation products (FDP)的產生。綜合以上實驗結果,我們認為DrKIn-I以及DrKIn-II都是重要的蛇毒促凝成分,可以協同同一蛇毒中RVV-X的促凝作用,而造成被鎖鍊蛇咬傷所引起嚴重的DIC及凝血後出血症狀。 | zh_TW |
| dc.description.abstract | Snake venoms contain a wide variety of biologically active substances that upset the intricate balance of hemostasis. Many of these proteins have been thoroughly characterized in relation to their functions and applications to molecular and clinical research. However, the functional significance of Kunitz-type protease inhibitors remains obscure. In this study, we purified two Kunitz-type protease inhibitors, namely DrKIn-I and DrKIn-II, from the venom of Daboia russelii russelii (Pakistan), with molecular masses of 7550 and 6940 respectively. APTT, PT, TT and ST tests revealed that both DrKIn-I and DrKIn-II inhibit the intrinsic pathway of coagulation, and tests with single factor deficient plasma showed that this inhibition is mainly through the inactivation of FXII. Amidolytic activity assays revealed that DrKIn-I, compared to DrKIn-II, has higher specificities for FXIIa and FXIa, while DrKIn-II has higher specificities for plasma kallikrein, plasmin and activated protein C. Incubation of DrKIn-I with human plasma decreased the generation of bradykinin in a dose-dependent manner and that this decrease correlates well with increased ADP-induced platelet aggregation and decreased vascular permeability. The pro-aggregatory effect on platelets appears to be mediated through a decrease in intracellular cyclic AMP levels. Furthermore, 7 nM of DrKIn-I almost completely abrogated the activation of protein C by the thrombin-thrombomodulin complex, and that co-injection of RVV-X (the factor X activator in the same venom) and DrKIn-I, but not DrKIn-II, significantly decreased the level of fibrinogen in mice compared to RVV-X alone. DrKIn-II, on the other hand, has less pronounced effect on bradykinin generation and protein C activation. However, treatment of DrKIn-II with the euglobulin fraction significantly prolonged the clot lysis time, compared to DrKIn-I, and that co-administration of RVV-X and DrKIn-II reduced the generation of fibrinogen/fibrin degradation products in mice, confirming the anti-fibrinolytic role of DrKIn-II. We therefore propose that both DrKIn-I and DrKIn-II are prothrombotic agents that help to synergize the procoagulating effects of RVV-X in snakebite symptoms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:58:05Z (GMT). No. of bitstreams: 1 ntu-98-R96b46011-1.pdf: 2346302 bytes, checksum: 15c2adfa33fd6e485c3a91096dab1b48 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………i
Acknowledgement……………………………………………………ii 中文摘要.............................................. iii Abstract…………………………………………………………… iv Contents…………………………………………………………… vi List of figures………………………………………………… vii List of tables………………………………………………… viii Chapter 1. Introduction…………………………………………1 Chapter 2. Materials and methods……………………………18 Chapter 3. Results………………………………………………28 Chapter 4. Discussion………………………………………… 58 References………………………………………………………… 67 | |
| dc.language.iso | en | |
| dc.title | 探討鎖鍊蛇毒中兩種Kunitz-type蛋白酶抑制劑的功能 | zh_TW |
| dc.title | Functional Significance of Two Kunitz-type Protease Inhibitors Isolated from Daboia russelii russelii Snake Venom | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧哲明(Che-Ming Teng),吳華林(Hua-Lin Wu),林淑華(Shu-Wha Lin) | |
| dc.subject.keyword | 內因途徑,優球蛋白,血管舒緩激肽,血塊溶解時間, | zh_TW |
| dc.subject.keyword | intrinsic pathway,euglobulin fraction,bradykinin,clot lysis time, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
