請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25984
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邵燿華 | |
dc.contributor.author | Wen-Yen Huang | en |
dc.contributor.author | 黃文彥 | zh_TW |
dc.date.accessioned | 2021-06-08T06:58:01Z | - |
dc.date.copyright | 2009-07-16 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-13 | |
dc.identifier.citation | [1] D. Kopec, M. H. Kabir, D. Reinharth, O. Rothschild, and J.A. Castiglione, “Human errors in medical practice: systematicclassification and reduction with automated information systems,”Journal of Medical Systems, vol. 27, no. 4, pp. 297–313,2003.
[2] G. D. Martich, C. S. Waldmann, and M. Imhoff, “Clinical informaticsin critical care,” Journal of Intensive Care Medicine,vol. 19, no. 3, pp. 154–163, 2004. [3] Z. Syed and J. Guttag, “Prototypical biological signals,” in Proceedingsof IEEE International Conference on Acoustics, Speech,and Signal Processing (ICASSP ’07), Honolulu, Hawaii, U.S.A.,April 2007. [4] C. S. Daw, C. E. A. Finney, and E. R. Tracy, “A review of symbolicanalysis of experimental data,” Review of Scientific Instruments,vol. 74, no. 2, pp. 915–930, 2003. [5] H. Sakoe,, S. Chiba, “Dynamic Programming Algorithm Optimization for Spoken Word Recognition”, In Proceeding in Speech Recognition eds. Waibel, A. and Lee, K., p.159-165. San Mateo, California: Morgan Kaufmann Publishers, Inc. 1990. 53 [6] D. Berndt and J. Clifford, “Using Dynamic Time Warping to find Patterns in Time Series.” In Working Notes of the Knowledge Discovery in Databases Work Shop, p.359-370, 1994. [7] D. Berndt and J. Clifford, “Finding Patterns in Time Series: Dynamic Programming Approach”, Advances in Knowledge Discovery and Data Mining, p.229-248, AAAI Press/ The MIT Press, 1996. [8]Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery andData Mining (KDD-96). [9]M. Daszykowski, B. Walczak and D.L. Massart. (2002). Representative Subset Selection. Analytica Chimica Acta, vol. 468, 91-103. [10] Jorg Sander,Martin Ester,Hans-Peter Kriegel,Xiaowei Xu.”Density-basedclustering in Spatial Databases:The algorithm GDBSCAN and its applications”.Institute for Computer science,university of Munich Oettingenstr. Munchen,Germany. [11] Jiawei Han and Micheline Kambe.”Data Mining:Concepts and Techniques” [12] J. Fraden and M. R. Neuman, “QRS wave detection,” Medicaland Biological Engineering and Computing, vol. 18, no. 2, pp.125–132, 1980. [13] R.Hamming, “Error-detecting and error-checking codes,” TheBell System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950. [14] G. M. Landau, J. P. Schmidt, and D. Sokol, “An algorithm forapproximate tandem repeats,” Journal of Computational Biology,vol. 8, no. 1, pp. 1–18, 2001. [15] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,“Basic local alignment search tool,” Journal of MolecularBiology, vol. 215, no. 3, pp. 403–410, 1990. [16] D. Jennings, T. Amabile, and L. Ross, “Informal covariationassessments: data-based versus theory-based judgements,” inJudgement Under Uncertainty: Heuristics and Biases, pp. 211–230, Cambridge University Press, Cambridge, UK, 1982. [17] M. Baumert, V. Baier, S. Truebner, A. Schirdewan, and A. Voss,“Short- and long-term joint symbolic dynamics of heart rateand blood pressure in dilated cardiomyopathy,” IEEE Transactions Transactionson Biomedical Engineering, vol. 52, no. 12, pp. 2112–2115,2005. [18] N. Abramson, Information Theory and Coding, McGraw Hill,New York, NY, USA, 1963. [19] I. Kojadinovic, “Relevance measures for subset variable selectionin regression problems based on k-additive mutual information,”Computational Statistics & Data Analysis, vol. 49,no. 4, pp. 1205–1227, 2005. [20] N. J. Holter, “New method for heart studies,” Science, vol. 134,no. 3486, pp. 1214–1220, 1961. [21] R. Agarwal, J. Gotman, D. Flanagan, and B. Rosenblatt, “AutomaticEEG analysis during long-term monitoring in the ICU,”Electroencephalography and Clinical Neurophysiology, vol. 107,no. 1, pp. 44–58, 1998. [22] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, andL. S‥ornmo, “Clustering ECG complexes using hermite functionsand self-organizing maps,” IEEE Transactions on BiomedicalEngineering, vol. 47, no. 7, pp. 838–848, 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25984 | - |
dc.description.abstract | Abstract
Aims Morphological classification of the single heartbeat is the most important part of the computer aided Arrhythmia Analysis. The operations of these systems applied can be divided into four steps:1. The removal of noise and artifacts ; 2. Fiducial points detection; 3. Morphological classification;4. The rhythm analysis and medical interpretation . In this paper, our aim was to classify the heartbeat into various groups. Method and results we use the method based on the Empirical Mode Decomposition algorithm and Dynamic Time Warping algorithm for extraction of features that can be used to classify various abnormal heartbeats. Further, we reduce the dimensionality of data in the form of n features of a vector with p variables used to principal component analysis .The performance of our algorithms has been evaluated by MIT-BIH Arrhythmia Database. According to the experimental result, the accuracy of all beats is approximately equal to or greater than 85% with the overall accuracy being 90%. This indicates the effectiveness of this method for classification. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:58:01Z (GMT). No. of bitstreams: 1 ntu-98-R95543039-1.pdf: 3702392 bytes, checksum: 98ce0b9b3b59f586c2fee07970e606a6 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
中文摘要 .......................................I Abstract .......................................II 圖目錄..........................................III 第一章 序論......................................1 1-1 前言與研究動機...............................1 1-2 心電圖原理...................................2 1-3 MIT-BIH 心律不整資料庫.......................9 1-4 文獻回顧.....................................15 1-5 研究架構.....................................18 第二章 研究原理..................................19 2-1 經驗模態分解.................................19 2-2 動態時間扭曲演算法...........................24 2-3 主成分分析法.................................28 2-4 密度群聚.....................................31 第三章 實驗流程與結果............................38 3-1 特徵萃取.....................................39 3-2 主成分分析過程...............................41 3-3 以密度進行分群並驗證.........................43 3-4 分類結果的統計與分析.........................46 第四章 結果討論..................................51 參考文獻.........................................53 | |
dc.language.iso | zh-TW | |
dc.title | 心電圖型態分類:應用本質模態特徵 | zh_TW |
dc.title | ECG Morphalogy Classification:Using Features of
Intrinsic Mode Function | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王崇禮,周迺寬,包舜華 | |
dc.subject.keyword | ECG,本質模態函數(IMF),主成分分析(PCA),密度集群分析(DBSCAN), | zh_TW |
dc.subject.keyword | ECG,IMF,PCA,DBSCAN, | en |
dc.relation.page | 56 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-07-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。