請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25980完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道(Yuh-Dauh Lyuu),楊曉文(Sheau-Wen Yang) | |
| dc.contributor.author | Hui-Chun Wu | en |
| dc.contributor.author | 吳蕙君 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:57Z | - |
| dc.date.copyright | 2009-07-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-13 | |
| dc.identifier.citation | [1] BLACK, F. “Fact and Fantasy in the Use of Options.” Financial Analysts Journal, 31 (1975), pp. 36–41, 61–72.
[2] BOYLE, P., AND LAU, S. “Bumping against the Barrier with the Binomial Method.” Journal of Derivatives, 1 (1994), pp. 6–14. [3] DAI, T.-S. “Efficient Option Pricing on Stocks Paying Discrete or Path-Dependent Dividends with the Stair Tree.” Quantitative Finance, forthcoming in 2009. [4] DAI, T.-S., AND LYUU, Y.-D. “Pricing Discrete Dividend-Paying Stock Options with the Stair Tree.” Taiwan Banking & Finance Quarterly, 5, No. 4 (December 2004), pp. 1-17. [5] DAI, T.-S., AND LYUU, Y.-D. “The Bino-trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing.” In Proceedings of FMA European Conference, Prague, Czech Republic, June 4–6, 2008. [6] FIGLEWSKI, S., AND GAO, B. “The Adaptive Mesh Model: A New Approach to Efficient Option Pricing.” Journal of Financial Economics, 53 (1999), pp. 313–351. [7] FRISHLING, V. “A Discrete Question.” Risk, 15 (2002), pp. 115–116. [8] LYUU, Y,-D. “Very Fast Algorithms for Barrier Option Pricing and the Ballot Problem.” Journal of Derivatives, 5 (1998), pp. 68–79. [9] LYUU, Y.–D. Financial Engineering & Computation: Principles, Mathematics, Algorithms. Cambridge: Cambridge University Press, 2002. [10] MILEVSKY, M.A., AND SALISBURY, T.S. “Financial Valuation of Guaranteed Minimum Withdrawal Benefits.” Insurance: Mathematics and Economics, 38 (2006), 21–38. [11] MUSIELA, M., AND RUTKOWSKI, M. Martingale Methods in Financial Modelling. Berlin: Springer-Verlag, 1997. [12] RITCHKEN, P. “On Pricing Barrier Options.” Journal of Derivatives, 3 (1995), pp. 19–28. [13] ROLL, R. “An Analytic Valuation Formula for Unprotected American Call Options on Stock with Known Dividends.” Journal of Financial Economics, 5 (1977), pp. 251–258. [14] 劉議謙,附保證提領保險商品之評價,東吳大學商用數學系碩士論文,中華民國97年7月。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25980 | - |
| dc.description.abstract | 保證最低提領給付保險附約(guaranteed minimum withdrawal benefits; GMWB)為變額年金保險(variable annuities; VA)之新型態附約,因其提供最低給付保證,兼具投資功能與報酬保障,為近年來新興之投資型保險商品。文獻上評價GMWB之方法大體上可歸類為蒙地卡羅模擬法和以數值方法求解PDE方程式兩種,本文將運用樹狀結構法更直觀且更貼近實務的對GMWB進行評價。我們以Milevsky與Salisbury (2006)的靜態模型為基礎,提出GMWB可拆解為一離散型單一向下失效障礙選擇權(discrete down-and-out single barrier option)加上一定期確定年金(generic term-certain annuity),沿用Dai與Lyuu (2004)和Dai (2009)設計的階梯樹狀模型(stair tree)股價會因配發現金股利而呈階梯狀下降之想法,運用Dai與Lyuu (2008)提出的bino-trinomial tree (BTT)評價GMWB內含選擇權。我們發現運用此法計算出的公平費用率與蒙地卡羅模擬法的數值結果完全相同,且運算速度更快。 | zh_TW |
| dc.description.abstract | Guaranteed minimum withdrawal benefits (GMWB) is an innovative rider of variable annuity (VA) policies. In recent years GMWB has gained popularity due to it being an investment-linked insurance while guaranteeing minimum return. The pricing method of GMWB can be generally classified in two ways: Monte Carlo simulation and numerical PDE techniques. In this research, the tree model is used to price GMWB rider in a more realistic and intuitive fashion than existing methods. We extend the static model in Milevsky and Salisbury (2006), showing that the product can be decomposed into a discrete down-and-out single barrier option plus a generic term-certain annuity. We follow the idea of stair tree in Dai and Lyuu (2004) and Dai (2009), using bino-trinomial tree (BTT) in Dai and Lyuu (2008) to price the GMWB’s embedded exotic option. Numerical experiments show this method to be more accurate and efficient. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:57Z (GMT). No. of bitstreams: 1 ntu-98-R96723058-1.pdf: 346863 bytes, checksum: f41a50d81e507329212dd6b7523874e1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第一節 研究背景與動機 1 第二節 研究流程與論文架構 2 第二章 文獻探討 3 第一節 GMWB評價模型 3 第二節 股利模型 3 第三節 障礙選擇權 5 第三章 研究方法 7 第一節 帳戶動態假設 7 第二節 樹狀結構 8 第四章 數值結果 18 第一節 評價GMWB價值 18 第二節 求解公平費用率 19 第五章 結論 20 參考文獻 21 | |
| dc.language.iso | zh-TW | |
| dc.title | 以樹狀模型評價保證最低提領給付保險附約 | zh_TW |
| dc.title | Pricing Guaranteed Minimum Withdrawal Benefits by Trees | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,楊曉文(syang@ncu.edu.tw) | |
| dc.contributor.oralexamcommittee | 曾郁仁,戴天時 | |
| dc.subject.keyword | 保證最低提領給付,BTT模型,障礙選擇權, | zh_TW |
| dc.subject.keyword | guaranteed minimum withdrawal benefits,bino-trinomial tree,barrier options, | en |
| dc.relation.page | 22 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-14 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 338.73 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
