請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳穎練 | |
dc.contributor.author | Ya-Lin Chang | en |
dc.contributor.author | 張雅琳 | zh_TW |
dc.date.accessioned | 2021-05-13T06:42:47Z | - |
dc.date.available | 2021-01-04 | |
dc.date.available | 2021-05-13T06:42:47Z | - |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-10-16 | |
dc.identifier.citation | 1.Denning DW, Bromley MJ. Infectious Disease. How to bolster the antifungal pipeline. Science (New York, NY) 2015; 347:1414-6.
2.Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harbor perspectives in medicine 2014; 4:a019703. 3.Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med 2016; 3:1-10. 4.Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science (New York, NY) 2005; 307:1321-4. 5.May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from environmental saprophyte to global pathogen. Nature reviews Microbiology 2016; 14:106-17. 6.Hull CM, Heitman J. Genetics of Cryptococcus neoformans. Annual review of genetics 2002; 36:557-615. 7.Desalermos A, Kourkoumpetis TK, Mylonakis E. Update on the epidemiology and management of cryptococcal meningitis. Expert opinion on pharmacotherapy 2012; 13:783-9. 8.Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS (London, England) 2009; 23:525-30. 9.Sloan DJ, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clinical Epidemiology 2014; 6:169-82. 10.Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2010; 50:291-322. 11.Bicanic T, Harrison T, Niepieklo A, Dyakopu N, Meintjes G. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2006; 43:1069-73. 12.Smith KD, Achan B, Hullsiek KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrobial Agents and Chemotherapy 2015; 59:7197-204. 13.Krysan DJ. Toward improved anti-cryptococcal drugs: novel molecules and repurposed drugs. Fungal genetics and biology : FG & B 2014; 78:93-8. 14.Mitsuyama J, Nomura N, Hashimoto K, Yamada E, Nishikawa H, Kaeriyama M, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrobial Agents and Chemotherapy 2008; 52:1318-24. 15.Dou D, Alex D, Du B, Tiew K-C, Aravapalli S, Mandadapu SR, et al. Antifungal activity of a series of 1,2-benzisothiazol-3(2H)-one derivatives. Bioorganic & Medicinal Chemistry 2011; 19:5782-7. 16.Baxter BK, DiDone L, Oga D, Schor S, Krysan DJ. Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules. ACS chemical biology 2011; 6:502-10. 17.Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. mBio 2015; 6: e00647-15. 18.Zhai B, Lin X. Evaluation of the anticryptococcal activity of the antibiotic polymyxin B in vitro and in vivo. International journal of antimicrobial agents 2013; 41:250-4. 19.Zhai B, Zhou H, Yang L, Zhang J, Jung K, Giam C-Z, et al. Polymyxin B, in combination with fluconazole, exerts a potent fungicidal effect. Journal of antimicrobial chemotherapy 2010; 65:931-8. 20.Butts A, Koselny K, Chabrier-Rosello Y, Semighini CP, Brown JC, Wang X, et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. MBio 2014; 5:e00765-13. 21.Wiederhold NP, Najvar LK, Bocanegra R, Kirkpatrick WR, Sorrell TC, Patterson TF. Limited activity of miltefosine in murine models of cryptococcal meningoencephalitis and disseminated cryptococcosis. Antimicrob Agents Chemother 2013; 57:745-50. 22.Ravu RR, Chen YL, Jacob MR, Pan X, Agarwal AK, Khan SI, et al. Synthesis and antifungal activities of miltefosine analogs. Bioorganic & medicinal chemistry letters 2013; 23:4828-31. 23.von Sommaruga E. Über die Moleculargröfse des Indigos. European Journal of Organic Chemistry 1879; 195:302-13. 24.Pathania AS, Kumar S, Guru SK, Bhushan S, Sharma PR, Aithagani SK, et al. The synthetic tryptanthrin analogue suppresses STAT3 signaling and induces caspase dependent apoptosis via ERK up regulation in human leukemia HL-60 cells. PloS one 2014; 9:e110411. 25.Chiang YR, Li A, Leu YL, Fang JY, Lin YK. An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules (Basel, Switzerland) 2013; 18:14381-96. 26.Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Archives of pharmacal research 2013; 36:517-35. 27.Ishihara T, Kohno K, Ushio S, Iwaki K, Ikeda M, Kurimoto M. Tryptanthrin inhibits nitric oxide and prostaglandin E(2) synthesis by murine macrophages. European journal of pharmacology 2000; 407:197-204. 28.Recio MC, Cerda-Nicolas M, Potterat O, Hamburger M, Rios JL. Anti-inflammatory and antiallergic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin. Planta medica 2006; 72:539-46. 29.Honda G, Tabata M. Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze. Planta medica 1979; 36:85-90. 30.Seifert K, Unger W. Insecticidal and fungicidal compounds from Isatis tinctoria. Zeitschrift fur Naturforschung C, Journal of biosciences 1994; 49:44-8. 31.Kawakami J, Matsushima N, Ogawa Y, Kakinami H, Nakane A, Kitahara H, et al. Antibacterial and antifungal activities of tryptanthrin derivatives. Transactions of the Materials Research Society of Japan 2011; 36:603-6. 32.Honda G, Tabata M. Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze. Planta medica 1979; 36:85-6. 33.Bandekar PP, Roopnarine KA, Parekh VJ, Mitchell TR, Novak MJ, Sinden RR. Antimicrobial activity of tryptanthrins in Escherichia coli. Journal of medicinal chemistry 2010; 53:3558-65. 34.Chan HL, Yip HY, Mak NK, Leung KN. Modulatory effects and action mechanisms of tryptanthrin on murine myeloid leukemia cells. Cellular & molecular immunology 2009; 6:335-42. 35.Miao S, Shi X, Zhang H, Wang S, Sun J, Hua W, et al. Proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on human chronic myeloid leukemia K562 cell line in vitro. International Journal of Molecular Sciences 2011; 12:3831-45. 36.Liao X, Leung KN. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells. Chemico-biological interactions 2013; 203:512-21. 37.Chang H-N, Huang S-T, Yeh Y-C, Wang H-S, Wang T-H, Wu Y-H, et al. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells. Journal of Ethnopharmacology 2015; 174:474-81. 38.Ohkusu M, Hata K, Takeo K. Bud emergence is gradually delayed from S to G2 with progression of growth phase in Cryptococcus neoformans. FEMS microbiology letters 2001; 194:251-5. 39.Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 2008; 135:174-88. 40.Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiology and molecular biology reviews : MMBR 2011; 75:213-67. 41.Lin X, Nielsen K, Patel S, Heitman J. Impact of mating type, serotype, and ploidy on the virulence of Cryptococcus neoformans. Infection and Immunity 2008; 76:2923-38. 42.Mitchell AP. Updated view of Cryptococcus neoformans mating type and virulence. Infection and Immunity 2003; 71:4829-30. 43.Thompson GR, 3rd, Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL, Patterson TF. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother 2009; 53:309-11. 44.Matar MJ, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother 2003; 47:1647-51. 45.Kraus PR, Boily MJ, Giles SS, Stajich JE, Allen A, Cox GM, et al. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryotic cell 2004; 3:1249-60. 46.Odom A, Del Poeta M, Perfect J, Heitman J. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrobial Agents and Chemotherapy 1997; 41:156-61. 47.Yang DH, Jung KW. Rewiring of signaling networks modulating thermotolerance in the human pathogen Cryptococcus neoformans. Genetics 2017; 205:201-19. 48.Shekhar-Guturja T, Gunaherath GM, Wijeratne EM, Lambert JP, Averette AF, Lee SC, et al. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat Chem Biol 2016; 12:867-75. 49.Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. The EMBO Journal 1997; 16:2576-89. 50.Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PloS one 2013; 8:e57672. 51.Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 2000; 44:739-46. 52.Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66:807-15. 53.Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends in microbiology 2003; 11:272-9. 54.García-Rodas R, Cordero RJB, Trevijano-Contador N, Janbon G, Moyrand F, Casadevall A, et al. Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. mBio 2014; 5:e00945-14. 55.Hawser S, Islam K. Comparisons of the effects of fungicidal and fungistatic antifungal agents on the morphogenetic transformation of Candida albicans. The Journal of antimicrobial chemotherapy 1999; 43:411-3. 56.Kelliher CM, Leman AR, Sierra CS, Haase SB. Investigating conservation of the cell-cycle-regulated transcriptional program in the fungal pathogen, Cryptococcus neoformans. PLoS Genetics 2016; 12:e1006453. 57.Song M-H, Lee J-W, Kim MS, Yoon J-K, White TC, Floyd A, et al. A flucytosine-responsive Mbp1/Swi4-like protein, Mbs1, plays pleiotropic roles in antifungal drug resistance, stress response, and virulence of Cryptococcus neoformans. Eukaryotic cell 2012; 11:53-67. 58.Haase SB, Wittenberg C. Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 2014; 196:65-90. 59.Florio AR, Ferrari S, De Carolis E, Torelli R, Fadda G, Sanguinetti M, et al. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC microbiology 2011; 11:97. 60.Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes & development 1999; 13:3271-9. 61.Liu T-B, Kim J-C, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, et al. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLOS Pathogens 2013; 9:e1003247. 62.Jähne EA, Eigenmann DE, Sampath C, Butterweck V, Culot M, Cecchelli R, et al. Pharmacokinetics and in vitro blood-brain barrier screening of the plant-erived alkaloid tryptanthrin. Planta medica 2016; 82:1021-9. 63.Zhang N, Hua Y, Wang C, Sun Y, Wang Z, Liu Z, et al. Distribution study of tryptanthrin in rat tissues by HPLC and its relationship with meridian tropism of Indigo naturalis in traditional Chinese medicine. Biomedical chromatography : BMC 2014; 28:1701-6. 64.Perfect JR, Ketabchi N, Cox GM, Ingram CW, Beiser CL. Karyotyping of Cryptococcus neoformans as an epidemiological tool. Journal of clinical microbiology 1993; 31:3305-9. 65.Wickes BL, Mayorga ME, Edman U, Edman JC. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proceedings of the National Academy of Sciences 1996; 93:7327-31. 66.Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VFJ, et al. Immunosuppressive and Nonimmunosuppressive Cyclosporine Analogs Are Toxic to the Opportunistic Fungal Pathogen Cryptococcus neoformans via Cyclophilin-Dependent Inhibition of Calcineurin. Antimicrobial Agents and Chemotherapy 2000; 44:143-9. 67.Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences of the United States of America 2004; 101:17258-63. 68.Kidd SE, Guo H, Bartlett KH, Xu J, Kronstad JW. Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryotic cell 2005; 4:1629-38. 69.Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics MGG 1984; 198:179-82. 70.Pfaller MA, Bale M, Buschelman B, Lancaster M, Espinel-Ingroff A, Rex JH, et al. Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods. Journal of clinical microbiology 1994; 32:1650-3. 71.Winston F, Dollard C, Ricupero-Hovasse SL. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast (Chichester, England) 1995; 11:53-5. 72.Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438:1151-6. 73.Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, Espinel-Ingroff A, Pfaller MA, Rennie R, et al. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of Dermatophytes to antifungals. Journal of clinical microbiology 2006; 44:4353-6. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2597 | - |
dc.description.abstract | 本研究致力於尋找對人類病原真菌念珠菌及隱球菌具抗真菌效果之活性物質,希望能找出具抑制能力或和現有藥物有協同作用的化合物。透過快速大量篩選小分子化合物,包括天然素材與美國食品藥品管理局核准之藥品,找出有抗真菌能力的化合物。從篩選結果中發現,來自蜜蜂腸胃道共生之放線菌所分泌的次級代謝物色胺酮tryptanthrin對隱球菌屬有抑制能力,對新型隱球菌的最小抑制濃度為2 ug/mL,對格特隱球菌為4 ug/mL。進一步實驗結果發現,tryptanthrin與鈣調蛋白免疫抑制劑(FK506)有協同作用。Tryptanthrin的抗隱球菌能力為劑量依賴性的,並且為抑菌型藥物而非殺菌型。我們也發現tryptanthrin在37 ºC時抑菌能力比30 ºC或25 ºC更佳。同時,tryptanthrin對臨床抗藥性隱球菌菌株T1和89-610也具抑菌作用。為了找到tryptanthrin可能參與的藥物標靶或途徑,我們用藥物敏感性的測試篩選突變株庫。相較於野生株,49個突變株對藥物更敏感或有抗性,其中有一部分突變株參與在細胞週期的調控。螢光激發流式細胞分選和基因表現定量結果顯示隱球菌的細胞週期調控可能和tryptanthrin呈現的抑制作用相關。綜合以上研究,天然素材tryptanthrin具有抗真菌能力並和FK506有協同作用,有潛力作為隱球菌症的治療策略,尤其是抗藥性菌株。 | zh_TW |
dc.description.abstract | This study aims to identify bioactive compounds that exert novel antifungal activity alone or exhibit synergistic effect with an existing antifungal agent against human fungal pathogens Cryptococcus and Candida. We screened several compound libraries including natural products, agricultural fungicides and FDA-approved drugs in order to identify compounds that exert antifungal activity. Among selected compounds, tryptanthrin secreted from Nocardiopsis alba, an actinobacterium existed in the intestine of honeybee, was chosen for further characterization because of its potent inhibition activity against Cryptococcus species with the minimal inhibition concentration (MIC) of 2 ug/mL for C. neoformans and 4 ug/mL for C. gattii. We further found that tryptanthrin showed synergistic effect with FK506, an immunosuppressant, based on broth dilution and checkerboard assays. Tryptanthrin inhibits the growth of Cryptococcus cells in a dose-dependent manner and shows fungistatic activity instead of fungicidal. We also found that tryptanthrin is more effective at 37 ºC compared with to 30 ºC or 25 ºC. Meanwhile, tryptanthrin demonstrated antifungal activity against two clinical azole-resistant C. neoformans isolates, T1 and 89-610. In order to identify potential targets or pathways that tryptanthrin involves in, we screened the Cryptococcus deletion mutant library by drug susceptibility test. Forty-nine deletion mutants were found to be more susceptible or resistant than that of the wild-type, and some of these mutants were involved in in cell cycle regulation. Fluorescence-activated cell sorting and gene expression quantification results support that cell cycle regulation in C. neoformans may be linked to tryptanthrin. In summary, the natural product tryptanthrin shows novel antifungal activity alone or in combination with FK506, leading possible therapeutic strategies for cryptococcosis caused by Cryptococcus species, especially the azole-resistant isolates. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:42:47Z (GMT). No. of bitstreams: 1 ntu-106-R03633014-1.pdf: 2896108 bytes, checksum: 263ee84c9799c985600f0286a9acd51b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Table of Contents
口試委員審定書...........................................i 誌謝...................................................ii 中文摘要...............................................iii Abstract...............................................iv 1.Introduction 1.1 Antifungal drug research and development............1 1.2 Cryptococcus neoformans.............................1 1.3 Currently used antifungal agents for Cryptococcus...2 1.4 Natural product tryptanthrin........................4 2. Materials and methods 2.1 Strains, media and chemicals........................6 2.2 Drug library screening..............................6 2.3 Disc diffusion assay................................7 2.4 Determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC)........7 2.5 Fractional inhibitory concentration assay for antifungal activity.....................................8 2.6 Growth kinetics assay...............................8 2.7 Serial dilution growth assay........................8 2.8 Mutant library screening............................9 2.9 Fluorescence-activated cell sorting assay...........9 2.10 Quantitative real-time RT-PCR.....................10 2.11 Murine model and antifungal treatment.............11 3. Results and discussion 3.1 Screening results of compound libraries…...........11 3.2 Tryptanthrin exhibits novel antifungal activity against Cryptococcus species...........................12 3.3 Growth of C. neoformans is sensitive to tryptanthrin at 37 ºC but not at 25 ºC..............................13 3.4 Tryptanthrin exhibits synergistic activity with calcineurin inhibitors FK506 against Cryptococcus species................................................14 3.5 Fitness test of Cryptococcus deletion mutant library................................................15 3.6 Tryptanthrin exhibits G1/S cell cycle arrest in C. neoformans.............................................16 3.7 Cell cycle associated genes were up-regulated after treating with tryptanthrin.............................17 3.8 Limited anti-cryptococcal activity of tryptanthrin in murine infection model.................................18 4. Conclusion..........................................19 5. Future work.........................................19 6. Acknowledgement.....................................21 7. References..........................................22 8. Appendix............................................43 | |
dc.language.iso | en | |
dc.title | 天然素材Tryptanthrin對隱球菌的抗菌效果及細胞週期之影響 | zh_TW |
dc.title | Tryptanthrin, a natural product, exhibits novel antifungal activity and cell cycle arrest against Cryptococcus species | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊玉良,薛雁冰,曾祥洸 | |
dc.subject.keyword | 色胺酮,隱球菌,天然素材,病原真菌,抗真菌藥劑, | zh_TW |
dc.subject.keyword | Tryptanthrin,Cryptococcus,Natural product,Fungal pathogen,Antifungal agent, | en |
dc.relation.page | 59 | |
dc.identifier.doi | 10.6342/NTU201704288 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-10-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 2.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。