請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証 | |
| dc.contributor.author | Jian-An Lai | en |
| dc.contributor.author | 賴建安 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:42Z | - |
| dc.date.copyright | 2009-07-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-15 | |
| dc.identifier.citation | [1] P. W. Anderson, “Absence of diffusion in certain random lattices”, Phys. Rev., vol. 109, pp. 1492 – 1505 (1958)
[2] L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors”, IBM J. Res. Dev., vol. 14, pp. 61 (1970) [3] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, vol. 22, pp. 2099 - 2111 (1980) [4] J. Chena, A. J. Heegera and F. Wudlb, “Confined soliton pairs (bipolarons) in polythiophene: In-situ magnetic resonance measurements”, Solid State Commun., Volume 58, pp. 251-257 (1986) [5] P. Phillips and H.-L. Wu, “Localization and its absence: a new metallic state for conducting polymers”, Science, vol. 252, pp. 1805 - 1812 (1991) [6] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., vol. 53, pp. 1951–1953 (1984) [7] M. Kohmoto and B. Sutherland, “Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model”, Phys. Rev. B, vol. 35, pp.1020 – 1033 (1987) [8] M. Kohmoto, L. P. Kadanoff and C. Tang, “Localization problem in one dimension: mapping and escape”, Phys. Rev. Lett., vol. 50, pp. 1870 - 1872 (1983) [9] V. Kumar, “Extended electronic states in a Fibonacci chain”, J. Phys.: Condens. Matter, vol. 2, pp.1349 - 1353 (1990) [10] A. E. Carlsson, “And now quasi-semiconductors?”, Nature, vol. 353, pp. 15 (1991) [11] E. Abe, Y. Yan and S. J. Pennycook, “Quasicrystals as cluster aggregates”, Nature Materials, vol. 3, pp. 759 - 767 (2004) [12] R. Penrose, “The role of aesthetics in pure and applied mathematical research”, Bull. Inst. Maths. Appl., vol. 10, pp. 266 (1974) [13] C. Janot, Quasicrystals: A Primer (Oxford Univ. Press, New York, 1994) [14] N. F. Mott, “Electrons in disordered structures”, Adv. phys., vol. 16, pp. 49 [15] R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25965 | - |
| dc.description.abstract | 本論文主要目的在於,以安德森定域化的觀念討論準晶體與具相關性之無序系統在各種結構下之電子性質,並瞭解金屬-絕緣轉態特性。我們將依序由週期性有序結構出發,以及討論具相關性之無序系統,尤其是隨機二聚體模型。然後進入近年來發現的新結構,也就是準晶體之討論。本文將以直觀的方式解釋安德森定域化與廣延態的觀念。我們主要利用隨機二聚體模型與一維費波那契模型作為數值分析之基礎,討論各種穿透係數、能帶結構、波函數之關係。在具相關性之無序系統中,我們可以驗證在隨機二聚體模型中的的穿透係數峰值平坦化之現象。在一維費波那契準晶體則觀察出了能帶分裂、波函數之自相似、以及三種定域化類型,包含定域態、臨界態、廣延態之特性。 | zh_TW |
| dc.description.abstract | The main purpose of this thesis is to analyze the electronic properties of quasicrystals and correlated disordered systems using the concept of Anderson localization, and understand the metal-insulator transition. We will start from introducing periodic ordered systems, and discuss the correlated disordered systems, especially the random-dimer model. Then we will investigate the new structure that had been discovered lately, namely the quasicrystals, and discuss the trace maps of one-dimensional Fibonacci models. We will give the concepts of extended and localized states intuitively. Our fundamental models for numerical analysis are random-dimer model and one-dimensional Fibonacci model. We will use these models to analyze the transmission coefficient, band structures, and wave functions. In correlated disordered systems, the merging of transmission peaks has been verified. In one-dimensional Fibonacci models, we observe the spectral-splitting, self-similarities of wave functions, and three kinds of localization, including extended, critical and localized states. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:42Z (GMT). No. of bitstreams: 1 ntu-98-R96525056-1.pdf: 1160056 bytes, checksum: f2ff85852fc9009437bb2a75925e03ac (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 ………………………………………………………………………….......i
英文摘要 ……………………………………………………………………………..ii 目錄 ………………………………………………………………………………….iii 表目錄 ………………………………………………………………………………..v 圖目錄 …………………………………………………………………………….....vi 符號表 …………………………………………………………………………….....ix 第一章 導論 1 1.1 背景與研究動機 1 1.2 文獻回顧 3 1.3 論文架構 5 第二章 具相關性之無序系統 6 2.1 週期性結構 6 2.2 無序系統 7 2.2.1 無序系統之分類與簡介 7 2.2.2 安德森定域化 8 2.3 具相關性之無序系統 10 2.3.1 長程規則性與短程規則性 10 2.3.2 隨機二聚體模型 12 2.3.3 導電高分子 14 2.4 廣延態與定域態 15 2.5 數值分析與討論 18 第三章 準晶體材料 35 3.1 準晶體 35 3.1.1 準晶體之特性 35 3.1.2 準晶體的定義與分類 36 3.2 金屬/絕緣體轉態 37 3.3 電子性質 39 3.4 轉移矩陣與能譜 47 3.5 跡映射與反跡映射 50 3.6 自相似與波函數的三種狀態 52 3.7 數值分析與討論 53 第四章 結論與展望 84 4.1 結論 84 4.2 未來展望 85 參考文獻 86 | |
| dc.language.iso | zh-TW | |
| dc.title | 具相關性系統及準晶體之金屬-絕緣轉態 | zh_TW |
| dc.title | The Metal-Insulator Transition in Correlated Systems and Quasicrystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔慶華,余宗興,林志昌 | |
| dc.subject.keyword | 安德森定域化,準晶體,金屬-絕緣轉態,跡映射, | zh_TW |
| dc.subject.keyword | Anderson localization,quasicrystals,metal-insulator transition,trace map, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
