Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25929
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇秀媛
dc.contributor.authorYi-Jing Huangen
dc.contributor.author黃翊倞zh_TW
dc.date.accessioned2021-06-08T06:57:10Z-
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-18
dc.identifier.citation1. 黃怡菁 (2001)。溫度對種子發芽之區間設限存活分析。國立臺灣大學農藝學硏究所生物統計組碩士論文。
2. 王晶玉 (2003)。離散時間方法在存活分析上的研究。國立政治大學統計學研究所。
3. 詹子慧 (2003)。作物病蟲害微生物防治之適當統計分析法。國立臺灣大學農藝學硏究所生物統計組碩士論文。
4. 林其臻 (2008)。以線型混合模式與廣義估計方程式分析生物防治資料。國立臺灣大學農藝學硏究所生物統計組碩士論文。
5. 王濟川、郭志剛 (2003)。Logistic迴歸模型-方法及應用。五南圖書。
6. Allison, P. D., (1982). Discrete-time methods for the analysis of event histories. Sociological Methodology, 13, 61-98. San Francisco: Jossey-Bass.
7. Allison, P. D., (1995). Survival Analysis Using the SAS System: A Practical Guide. Cary, NC: SAS Institute.
8. Box, G. E. P., and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211-252.
9. Cox, D.R., & Oakes, D. (1984). Analysis of Survival Data. London: Chapman and Hall.
10. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society:Series B, 34, 187-202.
11. Efron, B. (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, 83, 414-425.
12. Fahrmeir, L., & Wagenpfeil, S. (1996). Smoothing hazard functions and time-varying effects in discrete duration and competing risks models. Journal of the American Statistical Association, 91, 1584-1594.
13. Garrett M. Fitzmaurice, Nan M. Laird, & James H. Ware. (2004). Applied Longitudinal Analysis. NJ: Wiley.
14. Geert Molenberghs & Geert Verbeke. (2005). Models for Discrete Longitudinal Data. New York : Springer.
15. Hosmer, D. W., Jr., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). New York: Wiley.
16. Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D. & Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.). Cary, NC: SAS Institute.
17. McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.
18. Miller, R. G. (1981). Survival Analysis. New York: Wiley.
19. Prentice, R. L., & Gloeckler, L. A. (1978). Regression analysis of grouped survival with application to breast cancer data. Biometrics, 34, 57-68.
20. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111-163.
21. Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York: Oxford University Press.
22. Singer, J. D., & Willett, J. B. (1993). It's about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational Statistics, 18, 155-195.
23. Singer, J. D., & Willett, J. B. (1995). It's deja vu all over again: Using multiple-spell discrete-time survival analysis. Journal of Educational and Behavioral Statistics, 20(1), 41-67.
24. Xie, Y. (1994). The log-multiplicative models for discrete-time, discrete-covariate event-history data. Sociological Methodology, 24, 301–340.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25929-
dc.description.abstract在論文中我們以離散時間存活模式來分析生物防治資料。所分析的資料由國立屏東科技大學植物保護系 生物防治研究室提供。試驗的資料包含三種立枯絲核菌(Rhizoctonia solani Ktihn),代號為:R1、R2、R3,和七個木黴菌(Trichoderma spp.),其代號分別為:T1-T7。主要分析目的是找出哪一種木黴菌,對立枯絲核菌菌絲的生長抑制效果較佳。
當事件的時間中如果有太多的等值之情況時,以離散時間存活模式來分析較為合適。透過模型的建立與畫出風險函數圖跟存活函數圖,我們就可以知道不同的木黴菌拮抗立枯絲核菌的功效如何。另外,我們探討了模型中的時間變數之另一種替代形式與使用不同的連結函數對結果的影響。我們並針對所建立的模型之假設做驗證。最後我們再將結果和詹(2003)與林(2007)結果做比較。
zh_TW
dc.description.abstractThis thesis uses the Discrete-Time Survival model to analyze the biological control data. The data was provided by Biological Control Laboratory, Department of Plant Protection, National PingTung University of Science & Technology. In the experiment , three kinds of Rhizoctonia solani Ktihn( R1, R2 and R3 respectively), and seven Trichoderma spp. (T1-T7) were used. The main purpose is to determine which Trichoderma spp. would best restrain the propagation of Rhizoctonia solani Ktihn.
When event times are highly discrete due to a problem known as “ties”, the Discrete-Time Survival model is suitable to analyze the data. By constructing the models, plotting the hazard functions and survival functions, we can know the effects of different Trichoderma spp. that restrain the propagation of Rhizoctonia solani Ktihn. Moreover, this thesis discusses the alternative specification of time and the effect of using another link function. In addition, we also check the assumptions of the model. Finally, the results are also compared with those obtained by Chan(2003) and Lin(2007).
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:57:10Z (GMT). No. of bitstreams: 1
ntu-98-R96621208-1.pdf: 951216 bytes, checksum: 8fbf9097560737955c31e90e39ad18d6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章 前言 1
第二章 試驗材料與方法 2
第三章 統計方法 3
第一節 存活資料 3
第二節 離散時間存活分析的基本概念與名詞定義 3
第三節 模型設定的選擇 5
第四節 邏輯斯風險函數對時間的模式選擇 9
第五節 資料檔案的轉換 10
第六節 離散時間存活分析的模型 11
第七節 模型參數的估計 13
第四章 模型適合度評估 17
第一節 離差統計量 17
第二節 AIC與BIC訊息測量指標 18
第三節 殘差分析 18
第五章 模型假設的驗證 20
第一節 另一種時間的主要效應之替代形式 20
第二節 互補雙對數轉換 21
第三節 離散時間風險函數的假設 21
第六章 資料分析 22
第一節 敘述統計 22
第二節 模型選擇 29
第三節 木黴菌菌株拮抗立枯絲核菌菌絲的功效 33
第四節 時間的主要效應之替代形式 42
第五節 互補雙對數轉換 45
第六節 模型假設的驗證 48
第七章 結論與未來研究方向 54
第一節 結論 54
第二節 未來研究方向 54
第八章 參考文獻 56
附錄 58
dc.language.isozh-TW
dc.title以離散時間存活分析方法分析生物防治資料zh_TW
dc.titleApplications of discrete-time survival analysis to
biological control data
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭雲明,劉力瑜
dc.subject.keyword離散時間存活模式,存活分析,生物防治,zh_TW
dc.subject.keywordDiscrete-Time Survival model,survival analysis,biological control data,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2009-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
928.92 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved