請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25867
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊健志 | |
dc.contributor.author | Chin-Chung Chen | en |
dc.contributor.author | 陳勁中 | zh_TW |
dc.date.accessioned | 2021-06-08T06:56:26Z | - |
dc.date.copyright | 2009-07-24 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-24 | |
dc.identifier.citation | Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., and Zhu, J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281, 37636-37645.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410. Apse, M.P., and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr Opin Biotechnol 13, 146-150. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24, 1-15. Ashley, R.L., Clay, C.M., Farmerie, T.A., Niswender, G.D., and Nett, T.M. (2006). Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization. Endocrinology 147, 4151-4159. Barrero, J.M., Rodriguez, P.L., Quesada, V., Piqueras, P., Ponce, M.R., and Micol, J.L. (2006). Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29, 2000-2008. Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. Crit Rev Plant Sci 24, 23-58. Bent, A.F. (2000). Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124, 1540-1547. Bishopp, A., Mahonen, A.P., and Helariutta, Y. (2006). Signs of change: hormone receptors that regulate plant development. Development 133, 1857-1869. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., and Gorlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510. Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11, 113-116. Chinnusamy, V., Schumaker, K., and Zhu, J.K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55, 225-236. Chinnusamy, V., Jagendorf, A., and Zhu, J.K. (2005). Understanding and improving salt tolerance in plants. Crop Sci 45, 437-448. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci 12, 444-451. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.h., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054. Chiu, W.L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Curr Biol 6, 325-330. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362, 1120-1131. De Smet, I., Zhang, H., Inze, D., and Beeckman, T. (2006). A novel role for abscisic acid emerges from underground. Trends Plant Sci 11, 434-439. Does, M.P., Dekker, B.M., de Groot, M.J., and Offringa, R. (1991). A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol Biol 17, 151-153. Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103, 8281-8286. Edwards, D.P. (2005). Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol 67, 335-376. Falkenstein, E., Meyer, C., Eisen, C., Scriba, P.C., and Wehling, M. (1996). Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun 229, 86-89. Falkenstein, E., Tillmann, H.C., Christ, M., Feuring, M., and Wehling, M. (2000). Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol Rev 52, 513-556. Fernandes, M.S., Brosens, J.J., and Gellersen, B. (2008). Honey, we need to talk about the membrane progestin receptors. Steroids 73, 942-952. Fernandes, M.S., Pierron, V., Michalovich, D., Astle, S., Thornton, S., Peltoketo, H., Lam, E.W.F., Gellersen, B., Huhtaniemi, I., Allen, J., and Brosens, J.J. (2005). Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol 187, 89-101. Finkelstein, R.R., Gampala, S.S., and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl, S15-45. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L.L., and Bateman, A. (2008). The Pfam protein families database. Nucl Acids Res 36, D281-288. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9, 436-442. Gonez, L.J., Naselli, G., Banakh, I., Niwa, H., and Harrison, L.C. (2008). Pancreatic expression and mitochondrial localization of the progestin-adipoQ receptor PAQR10. Mol Med 14, 697-704. Grazzini, E., Guillon, G., Mouillac, B., and Zingg, H.H. (1998). Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392, 509-512. Guy, C., Kaplan, F., Kopka, J., Selbig, J., and Hincha, D.K. (2008). Metabolomics of temperature stress. Physiologia plantarum 132, 220-235. Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M., and Smeekens, S. (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J 53, 935-949. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res 27, 297-300. Hsieh, M.H., and Goodman, H.M. (2005). A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J Exp Bot 56, 3137-3147. Hu, C.D., Chinenov, Y., and Kerppola, T.K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789-798. Hui, E.K., Wang, P.C., and Lo, S.J. (1998). Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci 54, 1403-1411. Iljin, W.S. (1957). Drought resistance in plants and physiological processes. Annu Rev Plant Physiol 8, 257-274. Ishitani, M., Xiong, L., Lee, H., Stevenson, B., and Zhu, J.K. (1998). HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10, 1151-1162. Jarillo, J.A., Leyva, A., Salinas, J., and Martinez-Zapater, J.M. (1993). Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol 101, 833-837. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6, 3901-3907. Jones, A.M., and Assmann, S.M. (2004). Plants: the latest model system for G-protein research. EMBO Rep 5, 572-578. Kadowaki, T., and Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocr Rev 26, 439-451. Kao, A.L., Chang, T.Y., Chang, S,H,, Su, J.C., and Yang, C.C. (2005). Characterization of a novel Arabidopsis protein family AtMAPR homologous to 25-Dx/IZAg/Hpr6.6 proteins. Bot Bull Acad Sin 46, 107-118. Karpichev, I.V., Cornivelli, L., and Small, G.M. (2002). Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem 277, 19609-19617. Kim, J.Y., van de Wall, E., Laplante, M., Azzara, A., Trujillo, M.E., Hofmann, S.M., Schraw, T., Durand, J.L., Li, H., Li, G., Jelicks, L.A., Mehler, M.F., Hui, D.Y., Deshaies, Y., Shulman, G.I., Schwartz, G.J., and Scherer, P.E. (2007a). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117, 2621-2637. Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K., and Park, C.M. (2007b). Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucl Acids Res 35, 203-213. Kononowicz, A.K., Nelson, D.E., Singh, N.K., Hasegawa, P.M., and Bressan, R.A. (1992). Regulation of the osmotin gene promoter. Plant Cell 4, 513-524. Krebs, C.J., Jarvis, E.D., Chan, J., Lydon, J.P., Ogawa, S., and Pfaff, D.W. (2000). A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc Natl Acad Sci USA 97, 12816-12821. Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130, 2129-2141. Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., and Schroeder, J.I. (2006). The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140, 127-139. Kupchak, B.R., Garitaonandia, I., Villa, N.Y., Mullen, M.B., Weaver, M.G., Regalla, L.M., Kendall, E.A., and Lyons, T.J. (2007). Probing the mechanism of FET3 repression by Izh2p overexpression. Biochim Biophys Acta 1773, 1124-1132. Kurkela, S., and Franck, M. (1990). Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol 15, 137-144. Lalonde, S., Ehrhardt, D.W., Loque, D., Chen, J., Rhee, S.Y., and Frommer, W.B. (2008). Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J 53, 610-635. Lange, C.A. (2004). Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol Endocrinol 18, 269-278. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175. Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49, 199-222. Liu, Y.G., and Huang, N. (1998). Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16, 175-181. Lorenz, H., Hailey, D.W., and Lippincott-Schwartz, J. (2006). Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 3, 205-210. Lösel, R.M., Falkenstein, E., Feuring, M., Schultz, A., Tillmann, H.C., Rossol-Haseroth, K., and Wehling, M. (2003). Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83, 965-1016. Luconi, M., Bonaccorsi, L., Bini, L., Liberatori, S., Pallini, V., Forti, G., and Baldi, E. (2002). Characterization of membrane nongenomic receptors for progesterone in human spermatozoa. Steroids 67, 505-509. Lyons, T.J., Villa, N.Y., Regalla, L.M., Kupchak, B.R., Vagstad, A., and Eide, D.J. (2004). Metalloregulation of yeast membrane steroid receptor homologs. Proc Natl Acad Sci USA 101, 5506-5511. Min, K., Ha, S.C., Hasegawa, P.M., Bressan, R.A., Yun, D.J., and Kim, K.K. (2004). Crystal structure of osmotin, a plant antifungal protein. Proteins 54, 170-173. Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403-1414. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681. Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56, 165-185. Narasimhan, M.L., Coca, M.A., Jin, J., Yamauchi, T., Ito, Y., Kadowaki, T., Kim, K.K., Pardo, J.M., Damsz, B., and Hasegawa, P.M. (2005). Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17, 171-180. Nolte, I., Jeckel, D., Wieland, F.T., and Sohn, K. (2000). Localization and topology of ratp28, a member of a novel family of putative steroid-binding proteins. Biochim Biophys Acta 1543, 123-130. Onishi, M., Tachi, H., Kojima, T., Shiraiwa, M., and Takahara, H. (2006). Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.). Plant Physiol Biochem 44, 574-580. Page, R.D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357-358. Pei, Z.M., Kuchitsu, K., Ward, J.M., Schwarz, M., and Schroeder, J.I. (1997). Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409-423. Persson, B., and Argos, P. (1997). Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16, 453-457. Pietras, R.J., and Szego, C.M. (1977). Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265, 69-72. Pietras, R.J., and Szego, C.M. (1980). Partial purification and characterization of oestrogen receptors in subfractions of hepatocyte plasma membranes. Biochem J 191, 743-760. Raza, F.S., Takemori, H., Tojo, H., Okamoto, M., and Vinson, G.P. (2001). Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem 268, 2141-2147. Razandi, M., Pedram, A., and Levin, E.R. (2000). Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 14, 1434-1447. Schroeder, J.I., and Nambara, E. (2006). A quick release mechanism for abscisic acid. Cell 126, 1023-1025. Shao, H.B., Chu, L.Y., Jaleel, C.A., and Zhao, C.X. (2008). Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331, 215-225. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58, 221-227. Simoncini, T., and Genazzani, A.R. (2003). Non-genomic actions of sex steroid hormones. Eur J Endocrinol 148, 281-292. Simoncini, T., Fornari, L., Mannella, P., Varone, G., Caruso, A., Liao, J.K., and Genazzani, A.R. (2002). Novel non-transcriptional mechanisms for estrogen receptor signaling in the cardiovascular system. Interaction of estrogen receptor alpha with phosphatidylinositol 3-OH kinase. Steroids 67, 935-939. Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M., and Bressan, R.A. (1989). Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90, 1096-1101. Singh, N.K., Bracker, C.A., Hasegawa, P.M., Handa, A.K., Buckel, S., Hermodson, M.A., Pfankoch, E., Regnier, F.E., and Bressan, R.A. (1987). Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85, 529-536. Smith, J.L., Kupchak, B.R., Garitaonandia, I., Hoang, L.K., Maina, A.S., Regalla, L.M., and Lyons, T.J. (2008). Heterologous expression of human mPRalpha, mPRbeta and mPRgamma in yeast confirms their ability to function as membrane progesterone receptors. Steroids 73, 1160-1173. Stockinger, E., Gilmour, S., and Thomashow, M. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94, 1035-1040. Tang, Y.T., Tianhua, H., Matthew, A., Bryan, B., Jessica, M.B., Peter, C.E., and Walter, D.F. (2005). PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 61, 372-380. Thomas, P. (2008). Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 29, 292-312. Thomas, P., Pang, Y., Dong, J., Groenen, P., Kelder, J., de Vlieg, J., Zhu, Y., and Tubbs, C. (2007). Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor α subtypes and their evolutionary origins. Endocrinology 148, 705-718. α subtypes and their evolutionary origins. Endocrinology 148, 705-718. Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599. Trujillo, M.E., and Scherer, P.E. (2006). Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27, 762-778. Valliyodan, B., and Nguyen, H.T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9, 189-195. Villa, N.Y., Kupchak, B.R., Garitaonandia, I., Smith, J.L., Alonso, E., Alford, C., Cowart, L.A., Hannun, Y.A., and Lyons, T.J. (2009). Sphingolipids function as downstream effectors of a fungal PAQR. Mol Pharmacol 75, 866-875. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41, 195-211. Wang, P., and Song, C.P. (2008). Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178, 703–718. Wang, Z.V., and Scherer, P.E. (2008). Adiponectin, cardiovascular function, and hypertension. Hypertension 51, 8-14. Ward, J.M. (2001). Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17, 560-563. Watson, C.S. (1999). Signaling themes shared between peptide and steroid hormones at the plasma membrane. Sci STKE 1999, PE1. Watson, C.S., and Gametchu, B. (2003). Proteins of multiple classes may participate in nongenomic steroid actions. Exp Biol Med (Maywood) 228, 1272-1281. Welshons, W.V., Cormier, E.M., Wolf, M.F., Williams, P.O. Jr, Jordan, V.C. (1988). Estrogen receptor distribution in enucleated breast cancer cell lines. Endocrinology 122, 2379-2386. Wierman, M.E. (2007). Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ 31, 26-33. Xiong, L., Schumaker, K.S., and Zhu, J.K. (2002a). Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-183. Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002b). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277, 8588-8596. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993). Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236, 331-340. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10, 88-94. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57, 781-803. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B., and Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 1288-1295. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N.H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769. Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., Okada-Iwabu, M., Kawamoto, S., Kubota, N., Kubota, T., Ito, Y., Kamon, J., Tsuchida, A., Kumagai, K., Kozono, H., Hada, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Awazawa, M., Takamoto, I., Froguel, P., Hara, K., Tobe, K., Nagai, R., Ueki, K., and Kadowaki, T. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13, 332-339. Yang, X.H., Xu, Z.H., and Xue, H.W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17, 116-131. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25867 | - |
dc.description.abstract | HHP1蛋白質被預測具有七個穿膜區塊,是adiponectin接受體 (AdipoRs) 以及膜上progestin接受體 (mPRs) 的同源蛋白質。經由定量即時聚合酶鏈鎖反應與HHP1啟動子控制表現之GUS 活性分析,HHP1基因會被ABA及滲透逆境所誘導表現。由GUS活性的組織染色實驗發現,HHP1基因在某些器官及組織中有大量表現情形,這些器官及組織包括:根、維管組織、氣孔、水孔
、附著區塊及隔膜與種子的連接處,此結果顯示在阿拉伯芥中,HHP1可能參與膨壓改變及外來滲透逆境反應。此外,相對於野生型 (WT),在發芽率、早期生長與逆境反應基因 (RD29A、RD29B、ADH1、KIN1、COR15A及COR47) 表現的分析實驗中,HHP1的T-DNA插入基因剔除突變株 (hhp1-1) 對外加的ABA與滲透逆境具有較高敏感度。此種高敏感度在hhp1-1互補突變株 (c-hhp1-1) 中,可以被表現正常的HHP1基因所回復。然而,在保衛細胞中,相較於野生型與c-hhp1-1突變株,hhp1-1突變株對ABA及乾旱逆境則會呈現較低的敏感度。 此外,另一個HHP1的T-DNA插入基因剔除突變株 (hhp1-2),在轉譯成功狀況下,可以表現出只包含HHP1 N端的蛋白質片段。hhp1-2突變株對於ABA與滲透逆境的敏感度與hhp1-1突變株不盡相同,表示在HHP1的生理作用與滲透逆境之訊息傳遞上,HHP1的N端片段可能扮演重要角色。 藉由一級結構預測、細胞定位實驗與拓撲學分析,HHP1是一種細胞膜蛋白質,其C端片段朝向細胞外而N端片段 (第1至96個胺酸) 朝向細胞質內。酵母菌雙雜合實驗與雙分子螢光互補分析 (BiFC) 結果顯示,HHP1的N端片段與ICE1 (inducer of CBF expression 1) 有蛋白質交互作用,且交互作用的位置發生在細胞膜上。而外加冷逆境的狀況下,冷逆境反應基因 (RD29A、KIN1、COR15A及 COR47) 及會受ICE1所調控的CBF3與MYB15基因,在hhp1-1突變株中會有較低的基因表現情形,由此推測HHP1可能參與由ICE1傳遞的冷逆境訊息傳遞路徑。 在本論文中,我們推測HHP1基因突變會造成植物對ABA與滲透逆境有較高的敏感度,顯示在阿拉伯芥的早期生長時期,對於ABA與滲透逆境的訊息傳遞路徑而言,HHP1可能扮演一種負向調控因子的角色。此外,HHP1可能會透過與ICE1的蛋白質交互作用,來作為滲透逆境與冷逆境訊息傳遞的一個新交叉點。 | zh_TW |
dc.description.abstract | HHP1 (heptahelical transmembrane protein 1), a protein with a predicted seven transmembrane domain structure homologous to adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs), has been characterized. Expression of HHP1 was increased in response to abscisic acid (ABA) and salt/osmotic stress as shown by quantitative real-time PCR and HHP1 promoter-controlled GUS activity. By histochemical analyses of GUS activity, the expression of HHP1 was predominantly shown in the roots, vasculature, stomata, hydathodes, adhesion zones, and the connection sites between septa and seeds in the HHP1::GUS transgenic mutants, indicating that HHP1 may participate in the turgor pressure changes and the responses to exogenous osmotic stress in Arabidopsis. In addition, the HHP1 T-DNA insertion knockout mutant (hhp1-1) showed a higher sensitivity to ABA and osmotic stress than the wild-type (WT), as revealed by the germination rate and post-germination growth rate. The induced expression of stress-responsive genes (RD29A, RD29B, ADH1, KIN1, COR15A, and COR47) was more sensitive to exogenous ABA and osmotic stress in the hhp1-1 than in the WT. The hypersensitivity in the hhp1-1 mutant was reversed in the complementation mutant of HHP1 (c-hhp1-1) expressing HHP1 gene. However, the guard cells in the hhp1-1 have an impaired response to drought and ABA stress compared with that in the WT and c-hhp1-1.
Furthermore, the other HHP1 T-DNA insertion mutant, hhp1-2 (encoding a truncated N-terminus of HHP1), showed different sensitivity to ABA and osmotic stress compared with hhp1-1 by phenotypic observation and expression patterns of stress-responsive genes, implying that the N-terminus of HHP1 may play an important part in its function and mechanism on the osmotic signaling. Based on primary structure prediction, subcellular localization and topology analyses, HHP1 was a plasma membrane protein adopting a C-terminal-outside topology with an N-terminal region of about 96 amino acids facing the cytosol. By yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC), the N-terminal fragment (amino acids 1-96) of HHP1 was found to interact with ICE1 (inducer of CBF expression 1) while this interaction occurred in the plasma membrane of Arabidopsis protoplasts. The induced expressions of CBF3 and MYB15, which are regulated by ICE1, and cold stress-responsive genes (RD29A, KIN1, COR15A, and COR47) were less sensitive to exogenous cold stress in the hhp1-1 than in the WT, indicating that HHP1 may participate in the ICE1-mediated cold stress signaling pathway. In this study, we suggested that the mutation of HHP1 renders plants hypersensitive to ABA and osmotic stress, implying that HHP1 functions as a negative regulator in ABA and osmotic signaling during the early growth of Arabidopsis. Furthermore, HHP1 may act as a novel cross-talk point to the osmotic/cold signaling networks via ICE1. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:56:26Z (GMT). No. of bitstreams: 1 ntu-98-D92b47207-1.pdf: 5471602 bytes, checksum: 0e77c0169fc6d9b965f2c44bcd5f9635 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Contents i
Abbreviation List iii Abstract vii 中文摘要 ix Chapter 1 Introduction 1 1.1 Nongenomic action of steroid hormones 1 1.2 PAQR (progestin and AdipoQ receptor) family 3 1.2.1 Membrane progestin receptor (mPR) 4 1.2.2 Adiponectin receptor (AdipoR) 7 1.2.3 YOL002c 9 1.2.4 The membrane topology and subcellular localization of PAQR family 9 1.3 HHP (heptahelical transmembrane protein) family 10 1.4 Osmotic stress 11 1.4.1 Salt and drought stresses 12 1.4.2 Cold stress 16 1.5 Objective of this study 20 Chapter 2 Materials and Methods 21 2.1 Sequence analysis 21 2.2 Plant materials and growth conditions 21 2.3 Cloning of the HHP1 CDS (coding sequence) 25 2.4 Complementation of hhp1-1 25 2.5 Treatments with different concentrations of phytohormones and salt 29 2.6 Drought stress treatment 31 2.7 Cold stress treatment 31 2.8 Effects of ABA or osmotic stress on germination rate, post-germination growth efficiency and salt stress sensitivity 31 2.9 Chlorophyll measurement 32 2.10 Chilling and cold tolerance assay 32 2.11 Transpiration rate measurement under drought stress 33 2.12 Stomatal closure measurement under ABA stress 33 2.13 Salt and drought tolerance assay on adult Arabidopsis plants 34 2.14 Flowering-time analysis in response to ABA 34 2.15 Root length measurement of Arabidopsis seedlings and the effect of Zn2+ treatment 35 2.16 Quantitative real-time PCR analysis of HHP1 or stress-responsive gene expression profiles 35 2.17 Yeast two-hybrid (Y2H) screening and interaction assays 40 2.18 Subcellular localization of HHP1, nHHP1, ΔnHHP1 and ICE1 42 2.18.1 Transient expression in onion epidermal cells 43 2.18.2 Transient expression in Arabidopsis mesophyll protoplasts 43 2.18.2.1 Protoplast isolation 44 2.18.2.2 PEG transformation 44 2.19 Topology analysis of HHP1 45 2.20 Bimolecular fluorescence complementation (BiFC) and confocal imaging 45 2.21 HHP1 promoter::GUS (HHP1::GUS) assay 47 Chapter 3 Results 50 3.1 Identification and sequence analysis of HHPs 50 3.2 Isolation of T-DNA insertion mutant of HHP1 and the complementation test 51 3.3 Expression patterns of HHP1 at different growth stages and in different organs in WT Arabidopsis by quantitative real-time PCR 53 3.4 Expression profiles of HHP1 at different growth stages and in different organs by histochemical analyses of β-glucuronidase (GUS) 54 3.4.1 Expression patterns during the vegetative growth 55 3.4.2 Expression patterns during the reproductive growth 56 3.5 Effects of phytohormones on HHP1 expression profiles 59 3.6 HHP1 expression is increased by salt and drought stresses but not affected by cold stress 59 3.7 The hhp1-1 mutant shows higher sensitivity to ABA and osmotic stress 60 3.8 Expression profiles of stress-responsive genes in the WT, hhp1-1 and c-hhp1-1 in response to exogenous ABA and osmotic stress 64 3.9 The hhp1-2 mutant shows different sensitivity to ABA and osmotic stress compared with hhp1-1 mutant 65 3.10 Subcellular localization of HHP1 and its topology_using onion epidermal cells and Arabidopsis mesophyll protoplasts 68 3.11 Putative proteins interacting with HHP1 in yeast two-hybrid (Y2H) system assays 70 3.12 Protein-protein interaction between HHP1 and ICE1 verified by BiFC analyses 71 3.13 The expression profiles of cold stress-responsive genes under cold stress.. 72 3.14 The hhp1-1 mutant shows similar phenotype to WT in response to cold stress 74 3.15 The hhp1-1 mutant shows lower sensitivity to drought and ABA in guard cells 75 3.16 The hhp1-1 mutant shows no difference from the WT in some phenotypes under salt, drought or ABA stress 77 3.16.1 The hhp1-1 adult plant shows the same tolerance to salt or drought as the WT 77 3.16.2 The hhp1-1 mutant shows similar flowering time and lateral root formation to WT in response to ABA 77 Chapter 4 Discussion 79 4.1 HHPs are members of the PAQR family 79 4.2 HHP1 is involved in the ABA and osmotic stress response 81 4.3 HHP1 may participate in the ICE-mediated signaling pathway in response to cold stress 82 4.4 The possible relationship between HHP1 and osmotin 83 4.5 The physiological role of HHP1 in Arabidopsis may provide a new aspect for elucidating the crosstalk among various abiotic stresses 84 References 87 Figures (Results and Discussion) F1-F56 Tables (Results and Discussion) T1-T2 Appendices A1-A8 | |
dc.language.iso | en | |
dc.title | 阿拉伯芥新穎蛋白質HHP1之功能研究 | zh_TW |
dc.title | Functional characterization of a novel Arabidopsis protein HHP1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 邱子珍,常怡雍,王愛玉,莊榮輝,蘇仲卿,李平篤,謝明勳 | |
dc.subject.keyword | 阿拉伯芥新穎蛋白質, | zh_TW |
dc.subject.keyword | HHP1, | en |
dc.relation.page | 96 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-07-24 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。