Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25843
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorTsui-Ling Yenen
dc.contributor.author顏翠玲zh_TW
dc.date.accessioned2021-06-08T06:33:03Z-
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation[1] 楊明長, “電致色變系統簡介,” 化工, 第40卷, 第2期, 64 (1993); 何國川, “電化學與無窗簾時代,” 化工, 第37卷, 第3期, 32 (1990).
[2] 邱顯堂, “變色性材料,” 化工, 第38卷, 第2期, 74 (1991).
[3] C. M. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Sol. Energy Mater. Sol. Cells, 52, 207 (1998).
[4] R. D. Rauh, “Electrochromic Windows: an Overview,” Electrochim. Acta, 44, 3165 (1999).C. G. Granqvist, E. Avendano, and A. Azens, “Electrochromic Coatings and Devices: Survey of Some Recent Advances,” Thin Solid Films, 442, 201 (2003).
[5] J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” J. Chem. Phys., 34, 862 (1961).
[6] S. K. Deb, Appl. Opt. Suppl., 3, 193 (1969).
[7] S. K. Deb, “Electro-Optical Device Having Variable Optical Density,” U. S. Pat., 3,521,941 (1970).
[8] F. T. Bauer and J. H. Bechtel, “Automatic Rearview Mirror for Automotive Vehicles,” U. S. Pat., 4,443,057 (1984).
[9] H. J. Byker, “Single-compartment, Self-erasing, Solution-phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof,” U.S. Pat., 4,902,108 (1990).
[10] J. H. Brechtel and H. J. Byker, “Automatic Rearview Mirror System for Automotive Vehicles,” U. S. Pat., 4,917,477 (1990).
[11] E. S. Lee and D. L. DiBartolomeo, “Application Issues for Large-area Electrochromic Windows in Commercial Buildings,” Sol. Energy Mater. Sol. Cells, 71, 465 (2002).
[12] M. Grätzel, “Ultrafast Colour Displays,” Nature, 409, 575 (2001).
[13] U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, “Nanomaterials-Based Electrochromics for Paper-quility Displays,” Adv. Mater., 14, 845 (2002).
[14] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S.N. Rao, and N. Stobie, “Coloured Electrochromic “Paper-quality” Displays Based on Modified Mesoporous Electrodes,” Solid State Ionics, 165, 315 (2003).
[15] Monk, P.M.S., R.J. Mortimer, and D.R. Rosseinsky, Electrochromism: Fundamentals and Applications. 1995, New York: VCH Publishers, Inc.
[16] B. W. Faughnan, R. S. Crandall, and P. M. Heyman, RCA Rev., 36, 177 (1975).
[17] W. C. Dautremont-Smith, Displays, 3, 67 (1982).
[18] S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., 66, 1333 (1989).
[19] M. Kikao and S. Yamada, Proceedinds of the International Seminar on Solid State Ionic Devices, p. 359, (1988).
[20] C. K. Dyer and J. S. Leach, J. Electrochem. Soc., 125, 23 (1978).
[21] 黃玉仙, “含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2002).
[22] L. M. Siperko and T. Kuwana, J. Electrochem. Soc., 130, 396 (1983).
[23] J. Joseph, H. Gomathi, and G. P. Rao, J. Electroanal. Chem., 304, 263 (1991).
[24] 林巧芬, “以紫精搭配普魯士藍電致色變元件之研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2003).
[25] 柯惠琪, “含聚苯胺之電致色變元件性質研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2000).
[26] M. Mastragostino, C. Arbizzani, P. Ferloni, and A. Marinangeli, Solid State Ionics, 53, 471 (1992).
[27] C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, “Composite Coloration Efficiency Measurements of Electrochromic Polymers Based on 3, 4-Alkylenedioxythiophenes,” Chem. Mater., 14, 3964 (2002).
[28] Y. Nishikitani, M. Kobayashi, S. Uchida, and T. Kubo, “Electrochemical Properties of Non-Conjugated Electrochromic Polymers Derived from Aromatic Amine Derivatives,” Electrochim. Acta, 46, 2035 (2001).
[29] C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G. A. Niklasson, C. G. Ribbing, D. Rönnow, M. S. Mattsson, and M. Veszelei, “Towards the Smart Window: Progress in Electrochromics,” J. Non-crystal. Solids, 218, 273 (1997).
[30] E.S. Lee, and D.L. Dibartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials & Solar Cells, 71,465,(2002).
[31] L. B. Groenedaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,” Adv. Mater., 12, 481 (2000).
[32] T. Ito, H. Shirakawa, and S. Ikeda, “Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution,” J. Polym. Sci., Polym. Chem. Ed., 12, 11 (1974).
[33] H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc., Chem. Commun., 578 (1977).
[34] B. Wessling , “Dispersion Hypothesis and Nonequilibrium Thermodynamics – Key Elements for A Materials Science of Conductive Polymer – A Key to Understanding Polymer Blend or Other Multiphase Polymer Systems ,” Synth. Met., 1, 119 (1991).
[35] F. Jonas, G. Heywang, W. Schmidtberg, and J. Heinze, Eur. Pat., 339,340 (1988).
[36] F. Jonas and W. Krafft, Eur. Pat., 440,957 (1990).
[37] F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, “Method of imparting antistatic properties to a substrate by coating the substrate with a novel polythiophene,” U. S. Pat., 5,035,926 (1991).
[38] G. Sonmez, H. Meng, and F. Wudl, “Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-infrared Applications,” Chem. Mater., 15, 4923 (2003).
[39] G. Sonmez, H. Meng, and F. Wudl, “ Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency,” Chem. Mater., 16, 574 (2004).
[40] G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, “A Highly Stable, New Electrochromic Polymer: Poly(1,4-bis(2-(3’,4’-ethylenedioxy)thienyl)-2- methoxy-5-2”-ethylhexyloxybenzene),” Adv. Func. Mater., 13, 726 (2003).
[41] C. L. Gaupp and J. R. Reynolds, “Multichromic Copolymers Based on 3, 6-Bis(2 -(3, 4-ethylenedioxythiophene))-N-alkylcarbazole Derivatives,” Macromolecules, 36, 6305 (2003).
[42] B.C. Thompson, P. Schottland, and K. Zong, and J. R. Reynolds, “In Situ Colorimetric Analysis of Electrochromic Polymers and Devices,” Chem. Mater., 12, 1563 (2000).
[43] J. C. Gustafsson, B. Liedberg, and O. Inganäs, “In Situ Spectroscopic Investigations of Electrochromism and Ion Transport in a Poly(3,4-ethylenedioxythiophene) Electrode in a Solid State Electrochemical Cell,” Solid State Ionics, 69, 145 (1994).
[44] S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “Rapid Switching Solid State Electrochromic Devices Based on Complementary Conducting Polymer Films,” Adv. Mater., 8, 808 (1996).
[45] S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices,” Chem. Mater., 10, 2101 (1998).
[46] M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, “All Polymeric Solid State Electrochromic Devices,” Electrochim. Acta, 44, 2983 (1999).
[47] M. A. De Paoli, A. F. Nogueira, D. A. Machado, and C. Longo, “All-polymeric Electrochromic and Photoelectrochemical Devices: New Advances,” Electrochim. Acta, 46, 4243 (2001).
[48] D. DeLongchamp and P. T. Hammond, “Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices,” Adv. Mater., 13, 1455 (2001).
[49] F. Jonas, J. T. Morrison , “3,4-polythylenedioxythiophene (PEDT) : Conductive Coatings Technical Applications and Properties,” Synth. Met., 85, 1397 (1997).
[50] J. C. Carlberg, O. Inganaes, “Poly(3,4-polythylenedioxythiophene) as Electrode Material in Electrochemical Capacitors,” J. Electoochem. Soc., 144 (1997) L61.
[51] M. Vazquez, P. Danielsson, J. Bobacka, A. Lewenstam, and A. Ivaska, “Solution-cast Films of Poly(3,4-ethylenedioxythiophene) as Ion-to-electron Transducers in All-solid-state Ion-selective Electrodes,” Sens. Actuators B, 97, 182 (2004).
[52] H. Yamato, M. Ohwa, W. Wernet, “Stability of Polypyrrole and Poly(3,4-polythylenedioxythiophene) for Biosensor Application,” J. Electroanal. Chem., 397, 163 (1995).
[53] M. Granström, M. Berggren, and O. Inganäs, “Micrometer- and Nanometer-sized Polymeric Light-Emitting Diodes,” Science, 267, 1479 (1995).
[54] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, “PEDT/PSS for Efficient Hole-injection in Hybrid Organic Light-emitting Diodes,” Syn. Met., 111, 139 (2000).
[55] Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Poly(3,4-ethylenedioxythiophene) as a Hole Conductor in Solid State Dye Sensitized Solr Cells,” Syn. Met., 131, 185 (2002).
[56] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Solid State Dye Sensitized Solar Cells Using in Situ Polymerized PEDOTs as Hole Conductor,” Electrom. Commun., 6, 71 (2004).
[57] G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-New, Very Stable Conducting Polymers,” Adv. Mater., 4, 116 (1992).
[58] J. C. Carlberg and O. Inganäs, “Poly(3,4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors,” J Electrochem. Soc., 144, L61 (1997).
[59] H. Yamato, M. Ohwa, and W. Wernet, “Stability of Polypyrrole and Poly(3,4-ethylenedioxythiophene) for Biosensor Application,” J. Electroanal. Chem., 397, 163 (1995).
[60] S. Fabiano, C. Tran-Minh, B. Piro, L. A. Dang, M. C. Pham, and O. Vittori, “Poly 3,4-ethylenedioxythiophene as an Entrapment Support for Amperometric Enzyme Sensor,” Mat. Sci. Eng. C-Bio. S., 21, 61 (2002).
[61] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes,” J. Electroanal. Chem., 369, 87 (1994).
[62] X. Du, Z. Wang, “Effects of Polymerization Potential on the Properties of Electrosynthesized PEDOT Films,” Electrochim. Acta, 48, 1713 (2003).
[63] F. Blanchard, B. Carré, F. Bonhomme, P. Biensan, H. Pagès, D. Lemordant, “Study of Poly(3,4-ethylenedioxythiophene) Films Prepared in Propylene Carbonate Solutions Containing Different Lithium Salts,” J. Electroanal. Chem., 569, 203 (2004).
[64] M. Lapkowski, A. Pron , “Electrochemical Oxidation of 3,4-polythylenedioxythiophene “In-Situ” Conductivity and Spectroscopic Investigations ,” Synth. Met., 110, 79 (2000).
[65] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes,” J. Electroanal. Chem., 369, 87 (1994).
[66] P.-H. Aubert, L. Groenendaal, F. Louwet, L. Lutsen, D. Vanderzande, G. Zotti, “In-Situ Conductivity Measurements on Polyethylenethiophene Derivatives with Different Counter Ions,” Synth. Met., 126, 193 (2002).
[67] L. Niu, C. Kvarnstrom, S. Dong and A. Ivaska, “Mixed Ion Transfer Analysis in Redox Processes of Electroactive Thin Films,” Synth. Met., 121, 1389 (2001).
[68] W. Lu, A. G. Fadeev, B. Qi, and B. R. Mattes, “Fabricating Conducting Polymer Electrochromic Devices Using Ionic Liquids,” J. Electrochem. Soc., 151, H33 (2004).
[69] M. A. De Paoli, A. F. Nogueira, D. A. Machado, and C. Longo, “All-polymeric Electrochromic and Photoelectrochemical Devices: New Advances,” Electrochim. Acta, 46, 4243 (2001).
[70] S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices,” Chem. Mater., 10, 2101 (1998).
[71] G. A. Sotzing, S. A. Sapp, J. L. Reddinger, and J. R. Reynolds, “Rapid Switching Solid State Electrochromic Devices Based on Complementary Conducting Polymer Films,” Adv. Mater., 8, 808 (1996).
[72] J. C. Gustafsson, B. Liedberg, and O. Inganäs, “In Situ Spectroscopic Investigations of Electrochromism and Ion Transport in a Poly(3,4-ethylenedioxythiophene) Electrode in a Solid State Electrochemical Cell,” Solid State Ionics, 69, 145 (1994).
[73] G. Sonmez, H. Meng, and F. Wudl, “Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-infrared Applications,” Chem. Mater., 15, 4923 (2003).
[74] I. Schwendeman, C. L. Gaupp, J. M. Hancock, L. B. Groenendaal, and J. R. Reynolds, “Perfluoroalkanoate-substituted PEDOT for Electrochromic Device Applications,” Adv. Func. Mater., 13, 541 (2003).
[75] S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, “Novel Aromatic Poly(Amine-Imide)s Bearing A Pendent Triphenylamine Groups: Synthesis, Thermal, Photophysical, Electrochemical, and Electrochromic Characteristics ,” Macromolecules, 38, 307 (2005).
[76] M. Robin, P. Day, Adv. Inorg. Radiochem. 10, 247, (1967).
[77] A. V. Szeghalmi, M. Erdmann, V. Engel, M. Schmitt, S. Amthor, V. Kriegisch, G. Nöll, R. Stahl, C. Lambert, D. Leusser, D. Stalke, M. Zabel and J. Popp, “How Delocalized is N,N,N’,N’-tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure,” J. Am. Chem. Soc. 126, 7834, (2004).
[78] K. Y. Chiu, T.-H. Su, C. W. Huang, G.-S. Liou, S.-H. Cheng, “Substituent Effects on the Electrochemical and Spectral Characteristics of N,N,N’,N’-tetraaryl-p-phenylenediamine Derivatives,” J. Electroanal. Chem. 578, 283, (2005).
[79] 方郁文, “二庚基-4,4’聯吡啶之光電性質與其元件應用之研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2001).
[80] 林正嵐, “普魯士藍薄膜電極電化學析鍍與氧化還原反應行為之研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (1990).
[81] 黃詩雯, “以PEDOT及PMeT構成之全塞吩電致色變元件之光電性質及最適化,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2005).
[82] T.-S. Tung, K.-C. Ho, “ Cycling and At-rest Stabilities of a Complementary Electrochromic Device Containing Poly(3,4-ethylenedioxythiophene) and Prussian blue,” Sol. Energy Mater. Sol. Cells, 90, 521 (2006).
[83] T.-H. Lin, K.-C. Ho, “A Complementary Electrochromic Device Based on Polyaniline and Poly(3,4-ethylenedioxythiophene),” Sol. Energy Mater. Sol. Cells, 90, 506 (2006).
[84] S.-W. Huang, K.-C. Ho, “An All-thiophene Electrochromic Device Fabricated with Poly(3-methylthiophene) and Poly(3,4-ethylenedioxythiophene),” Sol. Energy Mater. Sol. Cells, 90, 491 (2006).
[85] N. Li, K. Carita, I. Ari, “Mixed Ion Transfer in Redox Processes of Poly(3,4-ethylenedioxythiophene),” J. Electroanal. Chem., 569, 151 (2004).
[86] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wagung dunner Schichten and zur Mikrowagung,“ Z. Phys., 155, 206 (1959).
[87] H. J. Byker, U. S. Patent, 5, 294, 376, 1994.
[88] A. Bund and S. Neudeck , “Effect of the Solvent and the Anion on the Doping/Dedoping Behavior of Poly(3,4-ethylenedioxythiophene) Films Studied with the Electrochemical Quartz Micorbalance,” J. Phys. Chem. B, 108(2004), 17845-17850.
[89] 董才士, “以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最適化與長期穩定研究,”國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2005).
[90] H. Varela, R. L. Bruno, and R. M. Torresi, “ Ionic transport in conducting polymers/nickel tetrasulfonated phthalocyanine modified electrodes,” Polymer, 44(2003), 5369-5379.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25843-
dc.description.abstract本論文針對一新型聚(胺-醯亞胺)薄膜之光電性質及其與導電高分子poly(3,4-ethylenedioxythiophene) (PEDOT)搭配之電致色變元件進行探討。其中,此新型高分子是由N,N-bis(4-aminophenyl)-N’,N’-diphenyl-1,4-phenylenediamine 以及3,3’,4,4’-benzophenonetera carboxylic dianhydride 兩個單體所聚合而成,並直接取得自國立暨南國際大學應用化學系劉貴生教授之實驗室,而為了方便描述此高分子便將其命名為Poly(PD-BCD)。
於薄膜的特性分析上,分別利用循環伏安法以及階梯電位操作對兩薄膜進行電化學及光學量測。其中,當Poly(PD-BCD)的電位操作於第一段反應區間內時,不論是光學或是電化學穩定性都比第二段反應區間之表現好,然而,第一段反應區間之著色效率值為48.32 cm2/C (λ=624nm)比起第二段反應區間的著色效率值316.06 cm2/C (λ=624nm)低的許多,因此,考量穩定性以及穿透度變化,應適當選擇Poly(PD-BCD)薄膜的操作電位窗範圍,以使其表現達最佳狀態。而另一薄膜電極PEDOT,當其電位操作於0.3V以及-1.0V區間時,著色效率值大約為178.06 cm2/C (λ=624nm)。
由於Poly(PD-BCD)為一新型高分子,因此為了瞭解Poly(PD-BCD)於不同的操作電位下,陰、陽離子以及溶劑分子進出薄膜的情形,本研究利用電化學微量石英震盪天秤(EQCM)對其進行質量之特性分析,並進一步對此電致色變材料提出其氧化還原機制。由於Poly(PD-BCD)在進行氧化時會形成Poly(PD-BCD)+·或是Poly(PD-BCD)+2的狀態,因此,為了維持電中性的條件,陰離子勢必會進入膜內以中和電性,所以於EQCM數據分析方面,兩段反應皆應考慮陰離子對薄膜質量變化的貢獻。在陽離子的考量方面,當Poly(PD-BCD)於含有不同陽離子之電解質液下(如LiClO4、NaClO4以及TBAClO4)進行掃描時,經由CV以及EQCM所得之數據,可以發現Poly(PD-BCD)之第一個反應區段所表現的Δm-q斜率值皆不相同,因此,除了陰離子之外,陽離子也會參與Poly(PD-BCD)的第一段反應。而於第二個反應區段中此薄膜電極所表現的Δm-q斜率值卻幾乎相同,表示陽離子效應對於Poly(PD-BCD)的第二段反應的影響是較不明顯的。經由上述之實驗結果,本研究針對兩個反應區段分別提出了不同的氧化還原反應式。

於元件的組裝上,首先利用Poly(PD-BCD)薄膜的第一個氧化還原反應區段 (0.1 ~ 0.6 V;q rxn 10 mC)搭配PEDOT (0.3 ~ -1.0 V;q rxn 10 mC)組裝成ECDI,其中,ECDI所表現的ΔT624大約為43.06%。有鑑於Poly(PD-BCD)薄膜之電位窗跨越至第二段反應區時,其穿透度變化會大幅提升,因此本研究選擇Poly(PD-BCD)的第一個反應區段和部份第二反應區段(0.1 ~ 0.8 V;q rxn 10 mC)與PEDOT (0.3 ~ -1.0 V;q rxn 10 mC)搭配組裝成ECDII,以試著提高元件之穿透度變化,而ECDII之ΔT624大約為44.85%左右。其中,兩元件於去色態時為淡藍色,著色態則為深藍色。然而,由於元件之光學表現會同時受到兩薄膜電位分布以及薄膜本身特性的影響,因此由電位分布之方法可知雖然ECDII內的Poly(PD-BCD)薄膜電位窗已跨越至第二段反應區,但是為了使元件內兩薄膜之電量能以一比一搭配,因此,在組裝ECDII時,製備Poly(PD-BCD)薄膜的鍍液濃度會先經過稀釋,不過卻也使Poly(PD-BCD)薄膜可提供的著色態穿透度受到限制,再加上ECDII內PEDOT的反應電位窗有縮減的趨勢(相較於ECDI內之PEDOT薄膜),因而使得PEDOT薄膜可提供的穿透度變化有限,所以ECDII穿透度差值的提升幅度並不明顯。
zh_TW
dc.description.abstractThe electro-optical properties of a poly(amine-imide) film and its electrochromic device assembled with poly(3,4-ethylenedioxythiophene) (PEDOT) have been studied in this study. The novel poly(amine-imide) film obtained from the lab. of Prof. Guey-Sheng Liou, Dept. of Applied Chemistry, National Chi Nan University, was synthesized with N,N-bis(4-aminophenyl)-N’,N’-diphenyl-1,4-phenylenediamine and 3,3’,4,4’-benzo-phenonetera carboxylic dianhydride, and the polymer was abbreviated as Poly(PD-BCD).
With cyclic voltammetry and potential step method, the electrochemical and optical properties of both films were investigated. For Poly(PD-BCD), the first redox stage showed higher electrochemical and optical stabilities than those of the second stage. However, the coloration efficiency of the first stage is 48.32 cm2/C (λ=624nm), which is lower than that of the second one, 316.06 cm2/C (λ=624nm). In order to optimize the optical and electrochemical properties of Poly(PD-BCD) electrode, the potential windows must be chosen properly. As for the other PEDOT thin film, the coloration efficiency is 178.06 cm2/C (λ=624nm) when the voltages were applied from 0.3 to -1.0 V.
The mass change of Poly(PD-BCD) was studied by an EQCM, including the transport of anions, cations and solvent into and out of the polymer matrix upon different applied voltages. The reaction mechanism of Poly(PD-BCD) has been proposed. Since the polymer chain possessed positive charge when Poly(PD-BCD) was oxidized to its radical cation state or dication state, the anions would insert into the polymer matrix in order to neutralize the charge, thus the contributions of anions should be taken into account toward the mass change for both reaction stages. However, when the electrodes were cycled in electrolytes containing different cations (such as LiClO4, NaClO4 and TBAClO4), the experimental results revealed different mechanisms for both reaction stages. The slopes of Δm-q obtained from the CV-EQCM measurements in three electrolytes were different for the first redox stage. This means that in addition to the involvement of anions, cations also play an important role in the first redox stage. However, the slopes of Δm-q were almost the same for the second redox stage. This reveals that cations play significantly less role in the second stage. Thus, different reaction mechanisms for the two reaction stages of Poly(PD-BCD) were proposed in this study.
Utilize the first redox reaction region of the Poly(PD-BCD) film (0.1 ~ 0.6 V;q rxn 10 mC) in conjunction with PEDOT film (0.3 ~ -1.0 V;q rxn 10 mC) to form ECDI which showed ΔT624 is 43.06%. As the operated potential of Poly(PD-BCD) film was extended to the second redox region, the transmittance attenuation of the electrode would be enlarged. In order to increase the transmittance attenuation of the devices, another reaction region of Poly(PD-BCD) (0.1 ~ 0.8 V;q rxn 10 mC) was selected to construct ECDII containing a PEDOT thin film (0.3 ~ -1.0 V;q rxn 10 mC), and ECDII achieved ΔT624 of 44.85%. Moreover, both devices showed light blue at the bleached state and deep blue at the colored state. However, the optical properties of the devices would be affected by the potential distribution and the intrinsic electro-optical properties on both films. Even when the potential window of the Poly(PD-BCD) in ECDII was extended to the second redox reaction region, the increase in the transmittance attenuation of ECDII was not obvious. It was due to that the polymer solution in forming the Poly(PD-BCD) film was diluted and the potential distribution of PEDOT film was decreased upon the operated potential of ECDII. Both reasons would restrain the transmittance attenuation of ECDII.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:33:03Z (GMT). No. of bitstreams: 1
ntu-95-R93549027-1.pdf: 4202566 bytes, checksum: 986afa52f71c934fb0d703429fe25b93 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
中文摘要 III
英文摘要 V
致謝…………………………………………………………………….VII
目錄 VIII
表目錄 XI
圖目錄 XIII
符號說明 XXI
第一章 緒論 1
1-1前言 1
1-2電致色變技術簡介 2
1-2-1電致色變技術之發展 3
1-2-2電致色變材料與元件類型 5
1-2-2-1電致色變材料 5
1-2-2-2電致色變元件之類型與結構 7
1-2-3電致色變元件之性能要求 14
第二章 文獻回顧與研究目的 15
2-1 PEDOT之簡介 15
2-1-1 PEDOT之光電行為 18
2-1-2 PEDOT在電致色變元件上的應用 24
2-2 Poly(PD-BCD) 之簡介 26
2-2-1 Poly(PD-BCD)之光電行為 30
2-3研究動機與目的 35
2-4研究架構 37
第三章 實驗部分 38
3-1儀器設備 38
3-2實驗藥品 39
3-3實驗方法 40
3-3-1導電玻璃之前處理 40
3-3-2溶劑之前處理 40
3-3-3定電位析鍍PEDOT薄膜 40
3-3-4 蒸發塗佈 Poly(PD-BCD)薄膜 41
3-3-5 電解質溶液之製備 42
3-3-6 元件之組裝 42
3-4電化學特性分析 44
3-5 In-situ UV-VIS光譜分析 44
3-6離子進出電致色變薄膜分析 48
3-7元件性能最適化與長期穩定性測試 51
3-8 薄膜餘元件內之絕對電位量測 53
第四章 電致色變薄膜特性分析 55
4-1薄膜循環伏安分析 55
4-1-1 Poly(PD-BCD)於ACN中之氧化還原反應 55
4-1-2 PEDOT在ACN中之氧化還原反應 65
4-2 薄膜之光譜特性與階梯電位響應分析 71
4-2-1 Poly(PD-BCD)光譜、階梯電位響應分析 71
4-2-2 PEDOT光譜、階梯電位響應分析 79
4-3離子進出Poly(PD-BCD)薄膜質量特性分析 86
4-3-1 Poly(PD-BCD)第一段氧化還原反應之EQCM分析 92
4-3-2 Poly(PD-BCD)第二段氧化還原反應之EQCM分析 109
第五章 電致色變元件特性分析 116
5-1 Poly(PD-BCD)-PEDOT ECDI元件特性分析 117
5-1-1 Poly(PD-BCD)-PEDOT ECDI之電化學與光學特性分析 117
5-1-2 Poly(PD-BCD)-PEDOT ECDI元件操作電壓與長期穩定性 125
5-1-3 Poly(PD-BCD)-PEDOT ECDI兩極電量比對元件性質之影響 125
5-2 Poly(PD-BCD)-PEDOT ECDII元件特性分析 152
第六章 結論與建議 162
6-1 結論 162
6-2 建議 170
第七章 參考文獻 172
附錄A Poly(PD-BCD)-PEDOT ECDIII 182
附錄B 溶液態電致色變元件 185
附錄C Poly(PD-BCD)薄膜之電解質測試 196
dc.language.isozh-TW
dc.subject聚(胺-醯亞胺)zh_TW
dc.subjectPEDOTzh_TW
dc.subject電致色變元件zh_TW
dc.subjectEQCMzh_TW
dc.subject離子傳輸zh_TW
dc.subject氧化還原反應機制zh_TW
dc.subjectPEDOTen
dc.subjectredox reaction mechanisen
dc.subjectPoly(amine-imide)en
dc.subjectElectrochromic deviceen
dc.subjectEQCMen
dc.subjectionic transporten
dc.title新型聚(胺-醯亞胺)薄膜之光電性質及其與PEDOT搭配之電致色變元件研究zh_TW
dc.titleStudy on the Electro-optical Properties of
a Novel Poly(amine-imide) Film and Its
Electrochromic Devices Assembled with PEDOT
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏溪成(Shi-Chern Yen),周澤川(Tse-Chuan Chou),楊明長(Ming-Chang Yang),劉貴生(Guey-Sheng Liou)
dc.subject.keyword電致色變元件,EQCM,離子傳輸,PEDOT,聚(胺-醯亞胺),氧化還原反應機制,zh_TW
dc.subject.keywordElectrochromic device,EQCM,ionic transport,PEDOT,Poly(amine-imide),redox reaction mechanis,en
dc.relation.page196
dc.rights.note未授權
dc.date.accepted2006-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved