Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorYing-Jie Suen
dc.contributor.author蘇英杰zh_TW
dc.date.accessioned2021-06-08T06:28:52Z-
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citation[1] D. A. Schultz, 'Plasmon resonant particles for biological detection,' Current Opinion in Biotechnology, vol. 14, pp. 13-22, 2003.
[2] Y. Zhang, R. H. Terrill, and P. W. Bohn, 'Coupled second-harmonic generation, surface plasmon resonance and AC impedance studies of full and partial monolayers in (Au, Ag)-alkanethiolate electrolyte systems,' Thin Solid Films, vol. 335, pp. 178-185, 1998.
[3] V. Vaicikauskas, J. Bremer, O. Hunderi, R. Antanavicius, and R. Januskevicius, 'Optical constants of indium tin oxide films as determined by a surface plasmon phase method,' Thin Solid Films, vol. 411, pp. 262-267, 2002.
[4] T. Abdallah, S. Abdalla, S. Negm, and H. Talaat, 'Surface plasmons resonance technique for the detection of nicotine in cigarette smoke,' Sensors and Actuators A: Physical, vol. 102, pp. 234-239, 2003.
[5] D. B. Shao and S. C. Chen, 'Numerical simulation of surface-plasmon-assisted nanolithography,' Optics Express, vol. 13, pp. 6964-6973, 2005.
[6]R. W. Wood, Philos. Mag., vol. 4, pp. 396, 1902.
[7]U. Fano, J. Opt. Soc. Am, vol. 31, pp. 213, 1941.
[8] R. H. Ritchie, 'Plasma Losses by Fast Electrons in Thin Films,' Phys. Rev., vol. 106, pp. 874, 1957.
[9] E. A. Stern and R. A. Ferrell, 'Surface Plasma Oscillations of a Degenerate Electron Gas,' Physical Review, vol. 120, pp. 130-136, 1960.
[10]J. P. Kottmann and O. J. F. Martin, 'Spectral response of plasmon resonant nanoparticles with a non-regular shape,' Opt. Express, vol. 6, pp. 213, 2000.
[11]J. P. Kottmann and O. J. F. Martin, 'Retardation-induced plasmon resonances in coupled nanoparticles,' Opt. Lett., vol. 26, pp. 1096, 2001.
[12]J. o. P. Kottmann and O. J. F. Martin, 'Plasmon resonant coupling in metallic nanowires,' Opt. Express, vol. 8, pp. 655, 2001.
[13]E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, 'Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,' J. Am. Opt. Soc. A, vol. 19, pp. 101-111, 2002.
[14]C. Rockstuhl, M. Salt, and H. Herzig, 'Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,' J. Opt. Soc. Am. A, vol. 20, pp. 1969, 2003.
[15]C. Rockstuhl, M. G. Salt, and H. P. Herzig, 'Analyzing the scattering properties of coupled metallic nanoparticles,' J. Opt. Soc. Am. A, vol. 21, pp. 1761, 2004.
[16]S. K. Gray and T. Kupka, 'Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,' Phys. Rev. B, vol. 68, 2003.
[17]M. Y. Ng and W. C. Liu, 'Local-field confinement in three-pair arrays of metallic nanocylinders.'
[18]S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, 'Plasmon excitation in sets of nanoscale cylinders and spheres,' Physical Review B, vol. 73, pp. 35403, 2006.
[19]V. Twersky, 'Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders,' The Journal of the Acoustical Society of America, vol. 24, pp. 42, 1952.
[20]V. Twersky, 'On Scattering of Waves by Random Distributions. I. Free-Space Scatterer Formalism,' Journal of Mathematical Physics, vol. 3, 1962.
[21]V. Twersky, 'Multiple Scattering of Electromagnetic Waves by Arbitrary Configurations,' Journal of Mathematical Physics, vol. 3, pp. 589, 1967.

[22]G. O. Olaofe, 'Scattering of two cylinders(Multiple scattering boundary value problem for two parallel circular cylinders),' RADIO SCIENCE, vol. 5, pp. 1351-1360, 1970.
[23]G. O. Olaofe, 'Scattering by an arbitrary configuration of parallel circular cylinders,' J. Opt. Soc. Am, vol. 60, pp. 1233–1236, 1970.
[24]D. Felbacq, G. Tayeb, and D. Maystre, 'Scattering by a random set of parallel cylinders,' J. Opt. Soc. Sm. A, vol. 11, pp. 2526, 1994.
[25]R. Englman and R. Ruppin, 'Optical lattice vibrations in finite ionic crystals: III,' 1968.
[26]P. B. Johnson and R. W. Christy, 'Optical Constants of the Noble Metals,' Phys. Rev. B, vol. 6, pp. 4370, 1972.
[27]M. Abramovitz and I. e. Stegun, Handbook of mathematic
functions with form.ulas, graphs, and mathematical tables: Dover, 1972.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25764-
dc.description.abstract表面電漿共振行為是存在於介電質與金屬間的界面現象,本研究主要是從麥克斯威爾電磁場理論出發,以赫姆霍茲方程式為電磁波動的統御方程式,使用散射矩陣法分析多顆圓柱散射體的散射場問題,藉此討論奈米尺度下的二維圓柱之表面電漿現象及散射場行為。
單顆圓柱散射體的散射場解析解很早就被解出,而多個圓柱陣列的散射場問題因為涉及到入射光在圓柱與圓柱間的多重散射,故散射行為較單顆圓柱的散射複雜,因此圓柱陣列的多重散射問題需要利用加法定理來處理;散射矩陣法的主要精神即是先用圓柱座標下的特殊函數(如貝索函數與漢克函數)對平面波和圓柱散射體的內外域電磁場做無窮級數展開,再藉由特殊函數的加法定理將所有圓柱散射體的展開中心移到同一個展開中心,最後可以得到一組連結整個散射系統的入射電磁場係數及散射電磁場係數的線性方程組,將該組線性方程配合電磁場在散射體邊界的連續條件,便可分別求出圓柱陣列中各個圓柱體的內部電磁場與外部散射場,再利用線性疊加原理即可求得整個圓柱系統的全域電磁場分佈。
散射矩陣法可以解決二維圓柱陣列彼此間的多重散射問題,但必須限制各圓柱彼此間必須是平行排列且互不相交,而且系統的背景介質必須是均勻的。本文主要探討多顆奈米柱在耦合作用的影響下所產生的散射場行為,並討論多顆圓柱彼此間距大小、入射波入射圓柱散射體系統的不同方向、及圓柱的幾何尺寸大小對於表面電漿共振行為的影響,由散射截面積去討論上述各種不同條件下的共振波長。在模擬圓柱陣列的散射問題時,文中主要使用銀光學參數之實驗結果為圓柱的材料參數,並以可見光波長範圍做討論。
zh_TW
dc.description.abstractThe scattering matrix method was applied to the analysis of surface plasmon resonance of infinite two-dimensional metal nanoparticles. The object of this thesis is to discuss the surface plasmon resonance on nanoparticles in different illumination direction. We also analysis the electric fields and magnetic fields with different particle size when the surface plasmon resonance occurs.
Since the multiple scattering should be considered, the scattering problem of many-cylinders is more complicated than single cylinder. By using scattering matrix method to solve the scattering problem of many-cylinders, first we have to express the incident field(plane wave)and scattered field by special function(for example, Bessel function and Hankel function)under cylindrical coordinate, then use the addition theorem of special function to get a linear system of equations to relate the incident field coefficients and scattered field coefficients. The incident and scattered field coefficients for every cylinder can be solved from the linear equations by matching electromagnetic boundary condition pointwisely.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:28:52Z (GMT). No. of bitstreams: 1
ntu-95-R93543009-1.pdf: 1644346 bytes, checksum: 00411c470b7a10fe8f7a3e32aa958786 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
圖目錄 iv
目錄 ii
第一章 序論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 本文內容 3
第二章 電磁理論與表面電漿子現象 5
2-1 麥克斯威爾方程組與邊界條件 5
2-2 向量波動方程式與向量赫姆霍茲方程式 7
2-3 表面電漿子共振現象 9
第三章 金屬奈米圓柱的散射問題 13
3-1 單顆圓柱之解析解 13
3-2 散射矩陣法與多顆圓柱之解析解 15
第四章 數值模擬結果 22
4-1 平面波入射單顆奈米銀圓柱 22
4-2 等半徑、等間距的兩顆奈米銀圓柱 27
4-3 等半徑、不同間距的兩顆奈米銀圓柱 35
4-4 不同半徑、等間距的兩顆奈米銀圓柱 41
第五章 結論與未來展望 46
參考文獻 47
dc.language.isozh-TW
dc.title以散射矩陣法研究二維奈米金屬圓柱之表面電漿共振zh_TW
dc.titleA Study of Surface Plasmon Resonance on 2-D Metal Cylindrical Nanoparticles by Scattering Matrix Methoden
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳瑞琳
dc.contributor.oralexamcommittee王繼宗,蘇正瑜,郭志禹
dc.subject.keyword表面電漿共振,散射矩陣法,金屬圓柱,zh_TW
dc.subject.keywordsurface plasmon resonance,scattering matrix method,metal cylinder,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2006-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved