Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chun-Chih Wu)
dc.contributor.authorYuan-Hsuan Jhangen
dc.contributor.author張芫瑄zh_TW
dc.date.accessioned2021-06-08T06:26:26Z-
dc.date.copyright2011-09-08
dc.date.issued2011
dc.date.submitted2011-08-02
dc.identifier.citation[1] Sze, S. M.; Semicondoctor Devices Physics and Technology, Wiley, 2nd edition, September 2001
[2] N. D.Denkov, O. D. Velve, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimension Crystals from latex particles on Substrates”, Langmuir, vol. 8, pp.3183-3190, 1992
[3] R. Micheletto, H. Fukuda, and M. Ohtsut, “ A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles”, Langmuir, vol. 11, pp.3333-3336 1995
[4] T. Yameasaki, T. Tsutsui, “Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres”, Jpn. J. Appl. Phys., vol. 38, pp.5916-5921, 1999
[5] Y. Yin, Y. Lu,B. Gates, and Y. Xia, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures”, J. Am. Chem. Soc., vol. 123, pp.8718-8729, 2001
[6] Y. Yin, Y. Lu,B. Gates, and Y. Xia, “A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Collouds”, J. Am. Chem. Soc., vol. 123, pp.771-772, 2001
[7] J. C. Hulteen, and R. P. Van Duynea, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A, vol. 13, pp.1553-1558, 1995
[8] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, “Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method”, Physicochem. Eng. Aspects, vol. 297, pp.71-78, 2007
[9] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy”, Langmuir, vol. 20, pp.6927-6931, 2004
[10] A. D. Ormonde, P. H. D. Dissertation, Northwestern University, 2001
[11] C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B, vol. 105, pp.5599-5611, 2001
[12] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing”, J. Phys. Chem. B, vol. 106, pp.1898-1902, 2002
[13] C. L. Haynes, and R. P. Van Duyne, “Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography”, Nano Lett., vol. 3, pp.939-943, 2003
[14] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow Nanosphere Lithography: Simulation and Experiment”, Nano Lett., vol. 4, pp.1359-1363, 2004
[15] C. L. Cheung, R. J. Nikoli´c, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography”, Nanotechnology, vol. 17, pp.1339-1343, 2006
[16] B. O’Reagen, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, pp.737-740, 1991
[17] A. Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., vol. 95, pp.49-68, 1995
[18] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated With Self-Assembled Nanosphere Template”, IEEE SENSORS JOURNAL, vol. 8, pp.880-884, 2008
[19] J. R. Vig, “UV /ozone cleaning of surfaces”, J. Vac. Sci. Technol. A, vol. 3, pp.1027-1034, 1985
[20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, “Conversion of Hight to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., vol. 115, pp.6382-6390, 1993
[21] M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, Englewood Cliffs, NJ: Prentice-Hall, 1982
[22] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, “Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell”. Langmuir, vol. 19, pp.3572-3574, 2003
[23] J. Zhang, G. Yang, Q. Sun, J. Zheng, P. Wang, Y. Zhu, X. Zhao, “The improved performance of dye sensitized solar cells by bifunctional aminosilane modified dye sensitized photoanode”, J. Renewable Sustainable Energy, vol. 2, 013104, 2010
[24] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, vol. 110, pp. 13872-13880, 2006
[25] H. Liyuan, K. Naoki, C. Yasuo, M. Takehito, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett., vol. 84, pp. 2433-2435, 2004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25718-
dc.description.abstract本論文中以旋轉塗布結合過水轉印法(Spin with Water-Transfer)製作出微奈米小球自組單層膜(Micro/Nano-Sphere Self-Assembled Monolayer),並將微奈米小球單層膜應用於染料敏化太陽能電池(Dys-Sensitized Solar Cell)以提升其電性表現及電池效率。
使用微奈米小球單層膜利用微奈米小球微影術(Nanosphere Lithography),以蒸鍍方式製作出二氧化矽奈米結構,並將此奈米結構蒸鍍上白金,做為染料敏化太陽能電池之白金對電極(Platium Counter Electrode),經實驗結果可以發現太陽能電池電壓電流特性(Current-Voltage Characteristic)、光電轉換效率(Incident Photon to Current Conversion Efficiency)、電化學阻抗(Electrochemical Impedance)等等電性特徵較一般太陽能電池佳。為使染料敏化太陽能電池之電性表現達最佳化,本研究以不同尺寸之奈米小球,及不同尺度之奈米結構進行實驗,結果顯示應用微奈米小球製成奈米結構之電池,其電池效率最多可提升27.3%。此外,採用旋轉塗布結合過水轉印法製作微奈米小球單層自組膜,可以簡單之製成方式製作大面積且缺陷較少之小球單層膜。
利用微奈米小球自組單層膜製成之奈米結構,本研究所研製之染料敏化太陽能電池已成功增進多項電性表現,進而提升電池效率。微奈米小球自組膜除了在太陽能電池的應用之外,在未來亦可應用於更多領域之發展。
zh_TW
dc.description.abstractIn this thesis, based on the “spin with water-transfer” method, the fabrication of micro/nano-sphere self-assembled monolayers has been developed and applied to dye-sensitized solar cell (DSSC).
The self-assembled micro/nano-sphere monolayer was used to fabricate the nanostructured platinum counter electrode of DSSC in which silicon dioxide nanostructures were first formed utilizing the nanosphere lithography and then coated by platinum. The performances of DSSCs with the nanostructured platinum counter electrodes are superior to those of conventional solar cells in the photocurrent, incident photon to current conversion efficiency, and electrochemical impedance. To optimize performances, micro/nanospheres of various sizes and nanostructured silicon dioxide of varied thicknesses had been studied in this thesis. Compared to conventional DSSCs, the efficiency of DSSC with nanostructured platinum counter electrode was improved by 27.3%. Furthermore, utilizing the “spin and water transfer” method, it is able to fabricate large-area micro/nano-sphere self-assembled monolayers with less defects and simpler processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:26:26Z (GMT). No. of bitstreams: 1
ntu-100-R98941006-1.pdf: 7253960 bytes, checksum: c5654eefc26963eea7a207fb089fd3cc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 序論 1
1.1 微奈米小球自組裝之介紹與應用 1
1.1.1 微奈米小球自組陣列形成機制 1
1.1.2 常見微奈米小球排列技術介紹 2
1.1.3 奈米小球微影術 3
1.2 研究動機與論文架構 4
1.2.1 染料敏化太陽能電池之介紹 5
1.2.2 論文架構 7
第二章 微奈米小球自組膜與染料敏化太陽能電池應用之研究方法 16
2.1 微奈米小球之自組單層膜製程 16
2.1.1 微奈米球溶液 16
2.1.2 表面性質處理 18
2.1.3 旋轉塗布結合過水轉印法 19
2.1.4 結果量測 21
2.2 應用於染料敏化太陽能電池之奈米結構白金對電極製程 22
2.2.1 具奈米結構之白金對電極製程 22
2.2.2 結果量測 24
2.3 染料敏化太陽能電池製程與量測 25
2.3.1 染料敏化太陽能電池之製備 25
2.3.2 結果量測 26
第三章 微奈米小球自組膜之分析與討論 39
3.1 微奈米小球自組膜之分析 39
3.1.1 不同尺寸之微奈米小球自組膜 39
3.1.2 不同基板之微奈米小球自組膜 41
3.2 應用直徑1微米小球製作奈米結構薄膜 42
3.3 應用直徑750奈米小球製作奈米結構薄膜 43
3.4 應用直徑500奈米小球製作奈米結構薄膜 45
第四章 應用奈米結構白金對電極之染料敏化太陽能電池之分析與討論 73
4.1 應用直徑1微米小球之電池特性 73
4.2 應用直徑750奈米小球之電池特性 74
4.3 應用直徑500奈米小球之電池特性 75
4.4 應用不同尺寸微奈米小球之電池特性比較 77
第五章 結論與未來展望 85
5.1 結論 85
5.2 未來展望 86
參考資料 87
dc.language.isozh-TW
dc.subject微奈米小球zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject奈米小球微影術zh_TW
dc.subject奈米結構zh_TW
dc.subjectDSSCen
dc.subjectNanospheresen
dc.subjectNanosphere Lithographyen
dc.subjectNanostructureen
dc.title微奈米小球之組裝與應用研究zh_TW
dc.titleInvestigation on Assembly of Micro/Nano-Spheres and Its Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俐吟,蘇海清
dc.subject.keyword微奈米小球,奈米小球微影術,奈米結構,染料敏化太陽能電池,zh_TW
dc.subject.keywordNanospheres,Nanosphere Lithography,Nanostructure,DSSC,en
dc.relation.page90
dc.rights.note未授權
dc.date.accepted2011-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved