Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱儀(Kai-Yi Chen)
dc.contributor.authorZhao-Ping Wengen
dc.contributor.author翁兆平zh_TW
dc.date.accessioned2021-05-13T06:42:12Z-
dc.date.available2018-06-12
dc.date.available2021-05-13T06:42:12Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-03-27
dc.identifier.citation謝光照,盧煌勝。(2006) 黑糯玉米台農5號之育成。台灣農業研究 55(3):149-163。
謝光照。(2015) 白糯玉米「台農6號」之育成。台灣農業研究 64(2):99-108。
謝光照。(2010) 糯質玉米自交系籽粒種皮厚度之差異。台灣農業研究 59(2):103-111。
劉紹國,謝光照。(2012) 超甜玉米品種間遺傳距離與產量之相關性。台灣農業研究 61(3):186-195。
Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, et al. (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449-2463
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, et al. (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727.
Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. (2001) High-resolution haplotype structure in the human genome. Nature Genetics 29:229 - 232
Evanno G, Regnaut S, Goudet J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620.
Fulton TM, Chunwongse J, Tanksley SD. (1995) Microprep Protocol for Extraction of DNA from Tomato and Other Herbaceous Plants. Plant Molecular Biology Reporter 13:207-209.
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, et al. (2011) A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PLoS ONE 6: e28334.
Goldstein DB. (2001) Islands of linkage disequilibrium. Nature Genetics 29:109 – 111
Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, et al. (2009) A first-generation haplotype map of maize. Science 326:1115-1117
Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, and Kresovich S. (2005) Equilibrium Processes Cannot Explain High Levels of Short- and Medium-Range Linkage Disequilibrium in the Domesticated Grass Sorghum bicolor. Genetics 171: 1247–1256.
Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, et al. (2007) Highly Variable Patterns of Linkage Disequilibrium in Multiple Soybean Populations. Genetics 175(4): 1937–1944
Inghelandt DV, Melchinger AE, Lebreton C, Stich B. (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics 120: 1289–1299
Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J. (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics 121:475-487
Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. (1988) Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. The American Journal of Human Genetics 43:520–526
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, et al. (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5778):1392-1396
Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, et al. (2009) A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics 5: e1000551.
Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL. et al. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics 42: 1053–1059
Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, et al. (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Molecular Biology 48:453-461.
Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F, et al. (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genetics & Genomes 7:1011–1023
Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. (2007) The Extent of Linkage Disequilibrium in Rice (Oryza sativa L.). Genetics 177: 2223–2232
Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Paterson AH. (2005) Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Molecular Ecology 14:2143–2154
Olivier M. (2003) A haplotype map of the human genome. Physiological Genomics 13:3-9
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38:904-909
Pritchard JK, Stephens M, Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, et al. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98:11479-11484
Sapolsky RJ, Hsie L, Berno A, Ghandour G, Mittmann M, Fan JB. (1999) High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays. Genetic Analysis 14:187-192.
Semagn K, Magorokosho C, Vivek BS, Makumbi D, Beyene Y, Mugo S, et al. (2012) Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genomics 13:113
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112-1115
Schulze A, Downward J. (2001) Navigating gene expression using microarrays--a technology review. Nature Cell Biology 3:E190-E195
Shen R, Fan JB, Campbell D, Chang W, Chen J, Doucet D, et al. (2005) High-throughput SNP genotyping on universal bead arrays. Mutation Research 573:70-82
Steemers FJ, Gunderson KL. (2005) Illumina, Inc. Pharmacogenomics 6:777-782.
Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R. (2014) Formation of Heterotic Groups and Understanding Genetic Effects in a Provitamin A Biofortified Maize Breeding Program. Crop science 54:14–24
Wang C, Jia G, Zhi H, Niu Z, Chai Y, Li W, et al. (2012) Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3: genes genomes genetics 2:769-777
Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, et al. (2007) Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. PLoS Genetics 3:e123
Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, et al. (2014) Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theoretical and Applied Genetics 127: 621–631
Yamanaka S, Nakamura I, Watanabe KN, Sato Y. (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theoretical and Applied Genetics. 108:1200–1204
Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD ,and Crouch J. (2009) Genetic Characterization and Linkage Disequilibrium Estimation of a Global Maize Collection Using SNP Markers. PLoS One 4: e8451
Yu J, Holland JB, McMullen MD, Buckler ES. (2008) Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 178:539-551
Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, et al. (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2567-
dc.description.abstract全基因體組關聯性分析 (Genome-Wide Association Study; GWAS) 的研究結果時常可見連鎖失衡區塊圖像不完整的現象。本研究欲探討連鎖失衡區塊圖像不完整的成因,是否和參試樣本不同次族群間起源不同的核苷酸變異有關。研究使用 15,919 個具有物理圖譜位置的基因座在 48 個玉米自交系中皆為同型結合基因型且沒有缺值的資料進行分析,此資料取自 MaizeSNP50 基因晶片的分析結果。首先將「參試樣本不同次族群間起源不同的核苷酸變異」定義為族群特有的分子標記位點。參試的玉米自交系不論由種原的來源記錄、STRUCTURE 軟體分析、或是 PCoA 分析方法都確定可以區分為溫帶馬齒種、溫帶甜質種、與熱帶種共三個次族群。藉由 STRUCTURE 軟體分群分析計算所得的 Q 值,建立次族群代表品系,並篩選出次族群特有的分子標記。其次「造成連鎖失衡區塊圖像不完整的分子標記」的篩選。將具完整圖像的連鎖失衡區塊定義為三個以上相鄰分子標記之間任一成對分子標記間相關係數 R 2大於 0.8 的染色體區間。造成連鎖失衡區塊圖像不完整的分子標記即為連鎖失衡區塊內與兩側相鄰分子標記的 R 2皆小於 0.8 的分子標記。上述資料分析結果顯示,使用 24 個代表品系可篩選出 6,696 個「族群特有的分子標記」,其中有 195 個分子標記是被定義為「造成連鎖失衡區塊圖像不完整的分子標記」。為了檢測「造成連鎖失衡區塊圖像不完整的分子標記」與「族群特有的分子標記」是否具有關聯性,使用 bootstrap 的概念,重覆進行 10,000 次取樣,每次取樣為自 15,919 個分子標記隨機抽取 6,696 個分子標記,並檢視不同數目的「造成連鎖失衡區塊圖像不完整分子標記」被隨機取得的機率。檢測結果顯示要隨機取得至少 195 個「造成連鎖失衡區塊圖像不完整」分子標記的機率僅為 0.6%。此結果顯示「造成連鎖失衡區塊圖像不完整的分子標記」與「族群特有的分子標記」是具有相關性的。zh_TW
dc.description.abstractIn the genome-wide association study (GWAS), incomplete pattern of linkage disequilibrium (LD) blocks were often found. This study is to explore whether incomplete pattern of LD blocks is related to nucleotide variations from different subpopulations. Data containing genotypes of 48 maize inbred lines was obtained by the MaizeSNP50 BeadChip and was used to address the aforementioned question. A number of 15,919 single nucleotide polymorphic markers, also known as the SNP loci, with known physical positions at maize reference sequences, were selected because their genotypes were all homozygous and had no missing value among 48 maize accessions. The nucleotide variations from different subpopulations were defined as 'the subpopulation-specific SNP loci'. The 48 maize inbred lines used in the current study can be classified as three subpopulations: temperate dent, temperate sweet and tropical. This classification was consensus between the analyses of the STRUCTURE software and the PCoA analysis, as well as the original records attached to these inbred lines. The representatives of different subpopulations were selected based on the three Q values of the STRUCTURE software, which indicate the proportions of genetic components from each of subpopulations. The subpopulation-specific SNP loci were then defined as those showing DNA polymorphism solely in one particular subpopulation. Using the same genotype dataset, 'the SNP loci making incomplete pattern of the linkage disequlibrium blocks' were selected independently. The linkage disequlibrium (LD) block was defined as a chromosome region containing more than three flanking SNP loci and the correlation coefficient between at least a pair of the SNP loci in the LD block was greater than 0.8. 'The SNP locus making incomplete pattern of the LD blocks' was then defined as the locus in the LD block which had the correlation coefficient less than 0.8 with its flanking loci on both sides.
The data analyses identified 24 representatives for three subpopulations, and a total of 6,696 'subpopulation-specific SNP loci'. Among these 'subpopulation-specific SNP loci', a number of 195 markers were also idetifined as 'the SNP loci making incomplete pattern of the LD blocks'. In order to test whether the 'population-specific markers' and 'the SNP loci making incomplete pattern of the LD blocks'are associated, a total of 10,000 resamplings by the bootstrap approach were made to build the probability mass function for the number of the randomly drawn SNP loci in the LD blocks. From each resampling, a number of 6,696 SNP loci were randomly drawn from 15,919 SNP loci, and then the number of the SNP loci sitting in the LD blocks was recorded. The result showed the cumulated probability to obtain at least 195 random SNP loci sitting in the LD blocks was 0.6%. This result inferred that 'the subpopulation-specific SNP loci' and 'the SNP loci making incomplete pattern of the LD blocks' are closely associated.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:42:12Z (GMT). No. of bitstreams: 1
ntu-106-R03621121-1.pdf: 2795759 bytes, checksum: 6ab0b5c29de25de56c1e72134bb9f98f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
誌謝……………………………………………………………………………i
中文摘要……………………………………………………………………ii
Abstract……………………………………………………………………iii
目錄……………………………………………………………………………v
圖目錄………………………………………………………………………vi
表目錄………………………………………………………………………vii
第一章 前言…………………………………………………………………1
第一節 族群特有基因型……………………………………………………1
第二節 連鎖失衡相關利用與研究…………………………………………2
第三節 族群結構……………………………………………………………5
第四節 MaizeSNP50 BeadChip……………………………………………7
第二章 研究目的…………………………………………………………10
第三章 材料及方法………………………………………………………13
第一節 試驗材料…………………………………………………………13
第二節 玉米全基因體組 DNA 萃取………………………………………17
第三節 MaizeSNP50 資料的產生與處理…………………………………19
第四節 族群結構的評估與代表品系的決定……………………………19
第五節 區分族群內特有之分子標記……………………………………21
第六節 連鎖失衡衰退評估………………………………………………21
第七節 特有分子標記假說驗證…………………………………………22
第四章 結果………………………………………………………………24
第一節 MaizeSNP50 資料讀取…………………………………………24
第二節 族群結構的評估與代表品系的決定……………………………25
第三節 族群特有之分子標記……………………………………………35
第五章 討論………………………………………………………………42
第一節 MaizeSNP50 資料讀取與利用……………………………………42
第二節 連鎖失衡的衰退距離……………………………………………43
第三節 玉米族群結構探討………………………………………………46
第四節 族群代表品系與特有分子標記的決定…………………………50
第五節 族群特有分子標記與連鎖失衡區塊……………………………51
第六章 結論………………………………………………………………54
參考文獻……………………………………………………………………55
附錄…………………………………………………………………………59
dc.language.isozh-TW
dc.subject族群代表品系zh_TW
dc.subject連鎖失衡區塊圖像不完整zh_TW
dc.subjectSTRUCTUREzh_TW
dc.subject族群特有分子標記zh_TW
dc.subjectbootstrapzh_TW
dc.subjectSTRUCTUREen
dc.subjectbootstrapen
dc.subjectrepresentatives of different subpopulationsen
dc.subjectthe subpopulation-specific markersen
dc.subjectincomplete pattern of the linkage disequilibrium blocksen
dc.title探討族群特有基因座與連鎖失衡區塊圖像不完整現象之關聯zh_TW
dc.titleExplore the Association between Population-specific Loci and the Incomplete Pattern of Linkage Disequilibrium Blocksen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡凱康(Kae-Kang Hwu),劉力瑜(Li-yu Liu),黃永芬(Yung-Fen Huang)
dc.subject.keyword連鎖失衡區塊圖像不完整,族群特有分子標記,STRUCTURE,族群代表品系,bootstrap,zh_TW
dc.subject.keywordincomplete pattern of the linkage disequilibrium blocks,the subpopulation-specific markers,STRUCTURE,representatives of different subpopulations,bootstrap,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201700716
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-03-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf2.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved