Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25664
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬林(Pung-Ling Huang)
dc.contributor.authorYa-Ping Lienen
dc.contributor.author連雅苹zh_TW
dc.date.accessioned2021-06-08T06:23:42Z-
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citation柒、參考文獻
李國基. 1994. 蝴蝶蘭乙烯形成cDNA之選殖及分析. 國立台灣大學園藝學研究所碩士論文.
宋崇榮、林瑞松. 1998. 文心蘭切花去除花藥蓋對切花品質影響之研究. 興大園藝 23:117-130.
林鄉薰. 2001. 1-MCP與乙烯前處理對盆花及切花壽命及品質之影響. 國立台灣大學園藝學研究所碩士論文.
吳弘達. 1997. 香蕉乙烯受體cDNA之選殖與分析. 國立台灣大學園藝學研究所碩士論文.
黃暐芬. 2002 文心蘭乙烯受體基因之選殖與分析 台國立台灣大學園藝學研究所碩士論文.
黃聖佑. 1997. 蝴蝶蘭轉殖系統之建立及ACC合成酶反義基因之構築. 國立台灣大學園藝學研究所碩士論文.
黃肇家. 1998文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響 中華農學研究 47(2):125-134.
張清安. 1996. 蘭花病毒病之特性與防治. 農業世界151:14-19.
葉素瑛. 2004. 蘭花抗病毒專一性載體構築與暫時性表達分析. 國立台灣大學園藝學研究所碩士論文.
鄭芳宜. 2003. 蝴蝶蘭及文心蘭基因轉殖之研究. 國立台灣大學園藝學研究所碩士論文. 89pp.
趙永椿、蘇旻鎂、梁文進. 1999. 文心蘭細菌性軟腐病之病原菌、發生生態及防治藥劑室內篩選. 屏東科技大學學報 3:203-212.
蘇秋竹、呂理.1992. Erwinia carotovora snbsp. Carotovora 引起文心蘭及虎頭蘭之細菌性軟腐病. 植物病理學會刊 1:190-195
Andika, I. B., H. Kondi, and T. Tamada. 2005. Evidence that RNA silencing-mediated resistance to Beet necrotic yellow vein is less effective in roots than in leaves. Mol. Plant Microb. Interact. 18 : 194-204.
Arencibia, A. D., E. R. Carmona, P. Tellez, M. T. Chan, S. M. Yu, L. E. Trujillo, and P. Oramas. 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213-222
Bar-Nun S. et al. 1983. G-418, an elongation inhibitor of 80 S ribosomes. Biochim. Biophys. Acta. 741:123-127.
Belarmino, M. M., and M. Mill. 2000 Agrobacterium mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep. 19:435-442.
Bleeker, A., and Schaller, G. 1996. The mechanism of ethylene perception. Plant Physiol. 111:653-660.
Bleecker, A. B., M. A. Estelle, C. Somerville, and H. Kende. 1988. Insensitive to ethylene conferred by a dominate mutation in Arabidopsis thaliana. Science 241:1086-1089.
Bovy, A. G., G. C. Angenent, H. J. M. Dons, and A. C. Altvorst. 1999. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flower. Mol. Breed. 5:301-308.
Chi, G., H. K.-L. Goh, K. Hoo, and T. Legavre. 1998. GUS gene expression in Anthurium andreanum, Oncidium Gower Ramsey and Brassolaeliocattleya orange Glory Empress after particle bombardment. Acta Hortic. 461: 379-383.
Chia, T. F., and J. He. 1999. Photosynthetic capacity in Oncidium (Orchidaceae) plants after virus eradication. Environ. Exp. Bot. 42:11-16.
Chai, M. L., C. J. Xu, K. K. Senthil, J. Y. Kim, and D. H. Kim. 2002. Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci. Hortic. 96:213-224.
Ciardi, J., and H. Klee. 2001. Regulation of ethylene-mediated responses at level of the receptor. Ann. Bot. 88:813-822.
Cui, M. L., K. Takada, B. Ma, and H. Ezura. 2004. Overexpression of a mutated melon ethylene receptor gene Cm-ETR1/H69A confers reduced ethylene sensitivity in a heterologous plant, Nemesia strumosa. Plant Sci. 167:253-258.
Dasgupta, I., V. G. Malathi, and S. K. Mukherjee. 2003. Genetic engineering for virus resistance. Curr. Sci. 84:341-354.
Dervinis, C., D. G. Clark, J. E. Barreet, and T. A. Nell. 2000. Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (Pelargonium ´ hortorum). Plant Mol. Bio. 42:847-856.
Golemboski, D. B., G. P. Lomonossoff, and M. Zaitlin. 1990. Plant transformed with a tobacco mosaic virus nonstructural gene are resistant to the virus. Proc. Natl. Acad. Sci. USA. 87:6311-6315.
Guo, H., and Ecker, J. R. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Cell Bio. 7:40-49.
Gamble, R. L., X. Qu, and G. E. Schaller. 2002. Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol. 128:1428-1438.
Grimsley, N., T. Hohn, J. W. Davies, and B. Hohn. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177-179
Hall, A. E., J. L. Findell, G. E. Schaller, E. C. Sisler, and A. B. Bleeker. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 123:1449-1457.
Hall, A. E., Q. G. Chen, J. L. Findell, and A. B. Bleecker. 1999. The relationship between ethylene binding and dominant insensitivity conferred by mutant from of the ETR1 ethylene receptor. Plant Physiol. 121:291-299.
Klee, H. J. 2002. Control of ethylene-mediated processes in tomato at the level of receptors. J. Exp. Bot. 53:2057-2063.
Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6:271-282.
Hua, J., H. Sakai, S. Nouricadeh, Q. G. Chen, A. B. Bleecker, J. R. Ecker, and E. M. Meyerwitz. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321-1332.
Imamuea, A., N. Hanaki, H. Umeda, A. Burg, S. P., and E. A. Dijkman. 1967. Molecular requirement for the biological activity of ethylene. Plant Physiol. 42:144-152.
Imamuea, A., N. Hanaki, H. Umeda, A. Nakamura, T. Suzuki, C. Ueguchi, and T. Mizumo. 1998. Response regulators implaicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 95:2691-2696.
Jan, F. J., C. Fagoaga,. S. Z. Pang, and D. Gonsalves. 2000. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81:235-242.
Kikkert J. R. 1993. The biolistic PDS-1000/He device. Plant Cell, Tissue Organ Cult. 33:221-226.
Kikkert, J. R., D. Hebert-Soule, P. G. Wallace, M. J. Striem, and B. I. Reisch. 1996. Transgenic plantlet of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspension. Plant Cell Rep. 15:311-316.
Klein, T. M., E. D. Wolf, R. Wu and J. C. Sanford. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70-73.
Kobayashi, R. S. and Kamemoto, H. 1989. Inheritance of floral necrosisin Dendrobium induced by Cymbidium mosaic virus. HortScience. 24:499-500.
Lapidot, M., R. Gafny, B. Ding, S. Wolf, W. J. Lucas, and R. N. Beachy. 1993. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4:959-970.
Liau, C. H., J. C. Lu, V. Prasad, H. H. Hsiao, S. J. You, J. T. Lee, N. S. Yang, H. E. Huang, T. Y. Feng, W. H. Chen, and M. T. Chan. 2003a. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res.12: 329–336.
Liau, C. H., S. J. You, V. Prasd, H. H. Hsiao, J. C. Lu, N. S. Yang, and M. T. Chan. 2003b. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep. 21:993-998.
MacFarlane S. A., and J. W. Davies. 1992. Plant transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection. Proc. Natl. Acad. Sci. USA. 89:5829-5833.
Marin-Rodriguez, M. C., J. Orchard, and G. B. Seymour. 2002. Pectate lyases, cell wall degradation and fruit softening. J. Biol. Chem. 53:2115-2119.
Men, S., X, Ming, Y. Wang, R. Liu, and W. Y. Li. 2003. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep. 21:592-598.
Namba, S., K. H. Ling, C. Gonsalves, D. Gonsalves, and J. L.Slightom. 1991. Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107:181-188.
Imamuea, A., N. Hanaki, H. Umeda, A. Nakamura, T. Suzuki, C. Ueguchi, and T. Mizumo. 1998. Response regulators implaicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 95:2691-2696.
Nukui, N., H. Ezura, and K. Minamisawa. 2004. Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and primordia. Plant Cell Physiol. 45:427-435.
O’Neill, S. D., J. A. Nedeau, X. S. Zhang, A. Q. Bui, and A. H. Halevy. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 5:419-432.
Prange, R. K., and J. M. DeLong 2003. 1-methylcyclopropene:The magic bullet for horticultural products. Chronica Horticulturae 43:11-14.
Rodriguez, F. I., J. J. Esch, A. E. Hall, B. M. Binder, G. E. Schaller, and A. B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996-998.
Sanford, J. C., F. D. Smith, and J. A. Russell. 1993. Optimizing the biolistic process for different biological applications. Method of Enzymology 217:483-509.
Schaller, G. E., A. N. Ladd, M. B. Lanahan, J. M. Spanbauer, and A. B. Bleeker. 1995. The ethylene response mediator ETR1 from Arabidopsis from a disulfide-linked dimer. J. Biol. Chem. 270:12526-12530.
Serek M., E. C. Sisler, and M. S. Reid. 1997. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant growth regul. 16:93-97.
Shibuya, K., M. Nagtata, N. Tanikawa, T. Toshioka, T. Hashiba, and S. Satoh.2002. Comparison of mRNA levels of three ethylene receptor in senescing flower of carnation (Dianthus caryophyllus L.). J. Exp. Bot. 53:399-406.
Sisler, E. C., Z. Kebenei, T. Winkelmann, and M. Serek. 2005. Efficacy of new inhibitors of ethylene perception in improvement of display life of ornamental crops. Acta Hortic. 669:315-320.
Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoujesdijk, A. G. Green, and P. M. Waterhouse. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407:319-320.
Tang, K., X Sun, Q. Hu, A. Wu, C. H. Lin, H. J. Lin, R. M. Twyman, P. Christou, and T. Feng. 2001. Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci. 160:1035-1042.
Tieman, D. M., and H. J. Klee. 1999. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol. 120:165-172.
Tieman, D. M., M. G. Taylor, J. A. Ciardi, and H. J. Klee. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. acad. Sci. 97:5663-5668.
Takahashi, H., T. Kobayashi, K. Sato-Nara, K. O. Tomita, and H. Ezura. 2002. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J. Exp. Bot. 53:415-422.
Vaeck, M., A. Reynaerts, H. Höfte, S. Jansens, M. D. Beuckeleer, C. Dean, M. Zabeau, M. V. Montagu, and J. Leemans. 1987. Transgenic plants protected from insect attack. Nature 328: 33 – 37.
Vein, P., J. DeBuyser, V. BuiTrang, R. Haicour, and Y. Henry. 1995. Foreign gene delivery into monocotylendonous species. Biotechnol. Adv. 13:653-671.
Wang, K. L.-C., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14:S131-151.
Wang, M. B., and Waterhouse, P. M. 2001. Application of gene silencing in plant. Curr. Opin. Plant Biol. 5:146-150.
Wang, Y. and Kumar, P. P. 2004. Heterologous expression of Arabidopsis ERS1 causes delayed senescence in coriander. Plant Cell Rep. 22:678-683.
Waterhouse, P. M., M. B. Wang, and, T. Lough. 2001. Gene siliencing as an adaptive defence against viruses. Nature 411:834-842.
Wegener, C. B. 2000. Induction of defence response against Erwinia soft rot endogenouns pectate lyase in potatoes. Physio. Mol. Plant Pathol. 2002. 69:91-100.
Wilkinson, J. Q., M. B. Lanahan, D.G. Clark, A. B. Bleecker, C. Chang, E. M. Meyerowitz, and H. J. Klee. 1997. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat. Biotech. 15:444-447.
Wilkinson, J. Q., M.B. Lanahan, H. C. Yen, J. J. Giovannoni, and H. J. Klee. 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270:1807-1808.
Zettler, F. W., N. J. Ko, G. C. Wisler, M. S. Elliot, and S. M. Wang. 1990. Viruses of orchids and their control. Plant Dis. 74:621-626.
Zhang, J.-S., C. Xie, Y.-G. Shen, and S.-Y. Chen. 2001. A two- component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Thero. Appl. Genet. 102:815-824.
Zhao, X. C., X. Qu, D. E. Mathew, and G. E. Schaller. 2002. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 130:1983-1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25664-
dc.description.abstract摘要
蘭花是台灣重要的園藝作物之ㄧ,本論文藉由基因轉殖,導入文心蘭乙烯受體突變基因ers1,以降低對乙烯敏感性與延長瓶插壽命;以核醣核酸干擾技術產生具有默化齒舌蘭輪點病毒(Odontoglossum ringspot virus; ORSV)與喜姆比蘭嵌紋病毒(Cymbidium mosaic virus ;CyMV)能力之植株;導入果膠分解酶(pectate lyase ; PL)基因之ㄧPelE-1基因,提升文心蘭植株對軟腐病之抗病能力。
由RNA干擾使mRNA發生降解,作為植物抗病毒之策略。本試驗以農桿菌轉殖法,轉殖ORSV與CyMV全長與短片段外鞘蛋白所構築之各默化載體,穩定轉殖到菸草(Nicotiana benthamiana)。菸草轉殖株經過GUS活性組織化學染色與聚合酶連鎖反應(polymerase chain reaction ; PCR) 分析,各構築均獲得轉殖株,將轉殖株分別接種ORSV與CyMV病毒,抽取病葉RNA,以反轉錄聚合酶連鎖反應(reverse transcription polymerase chain reaction ; RT-PCR)分析後得知可能具有默化CyMV核酸能力的轉殖系為pGCR4-5-4,具有默化ORSV核酸能力的轉殖系為pGOR4-1-2、pGOR4-2與pGORA18,這幾個轉殖系偵測不到病毒外鞘蛋白基因,推測於菸草的體內默化機制已啟動。
以文心蘭‘Gower Ramsey’癒傷組織為材料,藉由農桿菌媒介法進行基因轉殖。將自文心蘭得到之乙烯受體基因OgERS1進行點突變後,利用農桿菌轉殖法導入文心蘭中,以G418篩選後,細胞與PLB分別以GUS染色,已獲得75擬轉殖系,再將其中12個轉殖系細胞,抽取DNA進行PCR分析,有5個轉殖系增幅得到1342 bp長的片段,證明ers1導入文心蘭中。Erwinia chrysanthmi感染植物後會分泌PL,此酵素將細胞壁之果膠質分解成小分子的OG (oligogalacturonates),OG可誘導植物產生抗病反應,將PelE導入文心蘭,已獲得28個擬轉殖系,期望可以得到抗軟腐病之植株。目前栽培的文心蘭切花品種大多受到病毒感染,本論文亦期望藉由基因默化的策略得到抗CyMV以及ORSV之文心蘭轉殖株。將ORSV全長外鞘蛋白RNA干擾構築以農桿菌法轉殖文心蘭癒傷組織,以篩選標誌GFP檢測有7個細胞系可以在500-560 nm的波長下被激發出綠色螢光,證明轉殖事件的發生。
zh_TW
dc.description.abstractAbstract
Orchids are the most important horticultural crop in Taiwan. In this study, a mutated ethylene receptor gene (Og-ERS1) from Oncidium for generation of transgenic Oncidium with reduced ethylene sensitivity and extension of the vase life of the flowers. We also generated transgenic plants with the ability to degrade the RNA of Odontoglossum ringspot virus (ORSV) and Cymbidium mosaic virus (CyMV) by RNA interference (RNAi). In order to enhance resistance to the soft-rot disease, pectate lyase gene PelE-1 isolated from Erwinia chysanthemi was transformed into callus of Oncidium.
RNAi is an effective strategy for engineering plants with resistance to generate virus-resistance transgenic plants. In this study, a full length and four conserved regions of ORSV coat protein (CP) and a CyMV CP to Nicotiana benthamiana, by Agrobacterium tumefaciens as a tool. Putative transgenic tobaccos were further confirmed by GUS histochemical staining. and polymerase chain reaction (PCR) analyses. Inoculaion assay revelved that trangsenic line pGCR4-5-4 resistance to CyMV and line pGOR4-1-2, pGOR4-2 and pGORA18 resistance to ORSV infection. The results indicated CyMV and ORSV CP did not exist in four transgenic lines, pGCR4-5-4, pGOR4-1-2, pGOR4-2 and pGORA18, indicating the RNAi mechanism has already been started.
Genetically transformed plants of Oncidium ‘Gower Ramsey’ were regenerated after cocultivation of callus with Agrobacterium tumefaciens. Oncidium ethylene receptor gene OgERS1 with missense mutation was introduced into Oncidium, and 75 transformants were surrived after G418 selection. Putative transgenic calli and PLBs were further assayed by GUS histochemical staining and polymerase chain reaction (PCR) analyses. A DNA fragment of ca. 1342-bp was observed in five putative transgenic lines, indicating the mutated OgERS1 was introduced into the genome.
Pectate lyase (PL) secreted by Erwinia chrysanthmi de-polymerises pectin of plant cell wall into unsaturated oligogalacturonates (OG) that can trigger various plant defence responses. PelE-1, an isoenzyme of PL, was transferred to Oncidium callus using Agrobacterium tumefaciens as a tool, and expected to gain the soft-rot resistance. There were 28 transformants obtained, using G418 as a selection agent. Presently, most of Oncidium were infected by ORSV and CyMV. In this study, we also attempt to engineered plant that will resistance to ORSV. There are seven transformed callus lines screening by using GFP as a reporter.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:23:42Z (GMT). No. of bitstreams: 1
ntu-95-R92628129-1.pdf: 2931301 bytes, checksum: c1abdca61c541a257cff96c5b642e4c3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents內容目次
摘要...................................................................................................................1
Abstract ............................................…….........................................................3
壹、前言............................................…….........................................................5
貳、前人研究......................................................................................................7
一、蘭花病毒病害......................................................................………......7
1.齒舌蘭輪點病毒.............................................................................7
2.喜姆比蘭嵌紋病毒.........................................................................7
二、抗病毒之策略........................................................................…...........8
三、乙烯之生合成與訊息傳導..................................................................10
1.乙烯之生合成................................................................................10
2.乙烯之訊息傳導.............................................................................11
3.乙烯受體基因家族以及其特性.............................…......................11
(1)感應組區.................................................................................. 11
(2)激酶組區.................................................................................. 11
(3)反應調節蛋白........................................................................... 11
(4)乙烯受體之突變分析................................................................ 14
a.單一胺基酸改變.................................................................... 15
b.功能喪失之突變.....................................................................15
4.乙烯抑制劑之種類及作用方式..................................................….16
(1)乙烯生合成抑制劑....................................................................16
(2)乙烯作用抑制劑.......................................................................16
四、乙烯受體突變之應用........................................................................17
五、乙烯與文心蘭切花花朵老化關係..........................….........................18
1.文心蘭之瓶插壽命............................................................…….....18
2.文心蘭產生乙烯之原因..................................................................19
(1)小花苞產生乙烯........................................................................19
(2)切花自然老化............................................................................19
(3)花藥蓋脫落促進乙烯產生...............................................….......19
3.乙烯促進文心蘭花朵老化..............................................................20
4.文心蘭切花保鮮.................................................................…........20
六、細菌性軟腐病之簡介.......................................................…...............21
七、基因轉殖技術......................................................................…...........22
1.基因槍法.......................................................................….............22
2.農桿菌轉殖法............................................................…................23
3.文心蘭之基因轉殖.........................................................…….........24
參、材料與方法...............................................................................................25
一、蘭花抗病毒專一性載體之分析.............................................…..........25
1.菸草之轉殖........................................................…........................25
2.轉殖殖體.......................................................................................25
3.病毒接種...........................................................................…….....25
4.間接式酵素連結抗體法..................................................................26
二、文心蘭之基因轉殖.............................................................................27
1.文心蘭基因轉殖材料.....................................................................27
2.文心蘭癒傷組織對G418天然抗性試驗..........................................27
3.文心蘭癒傷組織對Hygromycin之天然抗性試驗............................28
4.轉殖菌種.......................................................................................29
5.轉殖流程.......................................................................................29
6.參試因子......................................................................................30
(1)菌濃度......................................................................................31
(2)共培養天數.......................................................…....................31
(3)震盪時間..................................................................................31
7.文心蘭擬轉殖株之分析..................................................................32
(1)擬轉殖株之材料........................................................................32
(2)擬轉殖株之篩選........................................................................32
三、文心蘭擬轉殖細胞與菸草轉殖株之分析..............................................32
1.GUS活性組織化學染色.................................................................32
2.DNA的抽取...................................................................................32
3.Total RNA的抽取..........................................................................33
4.聚合酶連鎖反應............................................................................34
5.反轉錄聚合酶連鎖反應..................................................................34
肆、結果...........................................................................................................35
一、抗病毒專一性載體之分析...................................................................35
1.以農桿菌法進行菸草基因轉殖.......................................................35
2.GUS化學活性組織染色法.............................................................38
3.綠色螢光蛋白之分析.....................................................................38
4.聚合酶連鎖反應分析.....................................................................38
5.轉殖株抗病效果之分析...........................................…...................41
二、文心蘭癒傷組織對G418之天然抗性................................................46
三、文心蘭癒傷組織對Hygromycin天然抗性試驗.....................................46
四、以農桿菌法於文心蘭進行基因轉殖...................................…….........51
1.菌濃度...........................................................................................52
2.共培養天數....................................................................................54
五、基因轉殖植株之分析...........................................................................58
1.擬轉殖細胞之GUS........................................................................58
2.聚合酶連鎖反應............................................................................58
3.綠色螢光蛋白之分析………………………….……..………..….….65
4.文心蘭轉殖株之分析………………………………..……….……….66
伍、討論…………………………………………………………...……………….73
一、抗病毒專一性載體之分析…………………….……….………..………73
二、文心蘭基因轉殖……………………………………….…..…………….74
1.文心蘭癒傷組織對抗生素之天然抗性…………..……….………….74
2.以農桿菌法於文心蘭進行基轉殖…………….….……………….….75
3.乙烯訊息傳導相關基因之轉殖……………………..………………..76
4.抗病基因之轉殖………………………………………………..….….77
陸、結語…..…………………………………………………………………..…….79
柒、參考文獻………………………………………………………………………..80
dc.language.isozh-TW
dc.subject文心蘭zh_TW
dc.subject基因默化zh_TW
dc.subject農桿菌zh_TW
dc.subject乙烯受體zh_TW
dc.subjectOncidiumen
dc.subjectgene silencingen
dc.subjectethylene receptoren
dc.subjectAgrobacteriumen
dc.title蘭花抗病毒專一性載體之功能分析與文心蘭基因轉殖之研究zh_TW
dc.titleFunctional Analysis of Vectors Specific for Virus Resistance in Orchids and Studies on Genetic Transformation of Oncidiumen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor杜宜殷(Yi-Yin Do)
dc.contributor.oralexamcommittee許圳塗(Chou-Tou Shii),葉信宏(Hsin-Hung Yeh)
dc.subject.keyword文心蘭,農桿菌,乙烯受體,基因默化,zh_TW
dc.subject.keywordOncidium,Agrobacterium,ethylene receptor,gene silencing,en
dc.relation.page85
dc.rights.note未授權
dc.date.accepted2006-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved