Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon Wang)
dc.contributor.authorXuan-Yi Luen
dc.contributor.author呂宣毅zh_TW
dc.date.accessioned2021-05-13T06:42:01Z-
dc.date.available2020-06-12
dc.date.available2021-05-13T06:42:01Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-04-24
dc.identifier.citation[1] K. C. Kao and G. A. Hockham, 'Dielectric-fibre surface waveguides for optical frequencies,' IEE Proc. J., vol. 113, pp. 1151–1158, 1966.
[2] Senior, John M., and M. Yousif Jamro. Optical Fiber Communications: Principles and Practice. Pearson Education, 2009.
[3] P. Urquhart, 'Review of rare earth doped fibre lasers and amplifiers,' IEE Proceedings J. Optoelectronics, vol. 135, pp. 385-407, 1988.
[4] R. Kashyap, Fiber Bragg Gratings. Academic Press, 2009.
[5] Rajan Ginu, ed. Optical Fiber Sensors: Advanced Techniques and Applications. CRC press, 2015.
[6] R. H. Stolen and R. P. De Paula, 'Single-mode fiber components,' Proc. IEEE, vol. 75, pp. 1498–1511, 1987.
[7] J.-P. Goure, I. Verrier, and J.-P. Meunier, 'Linear and nonlinear optical fibre devices,' J. Phys. D-Appl. Phys., vol. 22, pp. 1791–1805, 1989.
[8] P. Matthijsse and W. Griffioen, 'Matching optical fiber lifetime and bend-loss limits for optimized local loop fiber storage,' Opt. Fiber Technol., vol. 11, pp. 92–99, 2005.
[9] P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, 'Investigation of macrobending losses of standard single mode fiber with small bend radii,' Microw. Opt. Technol. Lett., vol. 49, pp. 2133–2138, 2007.
[10] N. G. R. Broderick, 'Optical Snakes and Ladders: Dispersion and nonlinearity in microcoil resonators,' Opt Express, vol. 16, pp. 16247-16254, 2008.
[11] G. Brambilla, 'Optical fibre nanotaper sensors,' Opt. Fiber Technol, vol. 16, pp. 331-342, 2010.
[12] J. Scheuer, 'Fiber microcoil optical gyroscope,' Opt. Lett., vol. 34, pp. 1630-1632, 2009.
[13] F. Xu, P. Horak, and G. Brambilla, 'Optical microfiber coil resonator refractometric sensor,' Opt. Express, vol. 15, pp. 7888-7893, 2007.
[14] Y. C. Hsieh, T. S. Peng, and L. A. Wang, “Millimeter-Sized Microfiber Coil Resonators with Enhanced Quality Factors by Increasing Coil Numbers,” IEEE Photon. Technol. Lett., 24, pp. 569-571, 2012
[15] T. H. Shen and L. A. Wang, “A Two-Layer Microcoil Resonator with Very High Quality Factor,” IEEE Photon. Technol. Lett., 26, pp. 535-537, 2014.
[16] F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, pp. 2164-2166, 2007.
[17] Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett., 22, pp. 1638–1640, 2010.
[18] L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers. Springer, 2010.
[19] G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, 'Optical fiber nanowires and microwires: Fabrication and applications,' Adv. Opt. Photon., vol. 1, pp. 107–161, 2009.
[20] G. Brambilla, 'Optical fibre nanowires and microwires: A review,' J. Optics., vol. 12, pp. 043001, 2010.
[21] J. Scheuer and M. Sumetsky, 'Optical‐fiber microcoil waveguides and resonators and their applications for interferometry and sensing,' Laser Photon. Rev., vol. 5, pp. 465–478, 2011.
[22] F. Xu and G. Brambilla. 'Demonstration of a refractometric sensor based on optical microfiber coil resonator,' Appl. Phys. Lett., vol. 92, pp. 101126, 2008.
[23] G. Xin and L. Tong. 'Supported microfiber loops for optical sensing.' Opt. Express, vol. 16, pp. 14429-14434, 2008.
[24] K.S. Lim, I. Aryanfar, W.Y. Chong, Y.K. Cheong, S.W. Harun, and H. Ahmad, 'Integrated microfibre device for refractive index and temperature sensing,' Sensors, vol. 12, pp. 11782-11789, 2012.
[25] H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, 'Solution concentration and refractive index sensing based on polymer microfiber knot resonator,' Appl. Phys. Express, vol.7, pp. 022501, 2014.
[26] X. Li and H. Ding, 'A stable evanescent field-based microfiber knot resonator refractive index sensor.' IEEE Photon. Technol. Lett, vol. 26, pp. 1625-1628, 2014.
[27] X. Zeng, Y. Wu, C. Hou, J. Bai and G. Yang, 'A temperature sensor based on optical microfiber knot resonator,' Optics Communications, vol. 282, pp. 3817-3819, 2009.
[28] K.S. Lim, S.W. Harun, S.S.A. Damanhuri, A.A. Jasim, C.K. Tio and H. Ahmad, 'Current sensor based on microfiber knot resonator,' Sensors and Actuators A: Physical, vol. 167, pp. 60-62, 2011.
[29] X. Xie, J. Li, L.P. Sun, X. Shen, L. Jin and B.O. Guan, 'A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,' Sensors, vol. 14, pp. 8423-8429, 2014.
[30] S.C. Yan, B.C. Zheng, J.H. Chen, F. Xu and Y.Q. Lu, (2015). 'Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,' Appl. Phys. Lett., vol. 107, pp. 053502, 2015.
[31] M.S. Yoon, S.K. Kim and Y.G. Han, 'Highly sensitive current sensor based on an optical microfiber loop resonator incorporating low index polymer overlay,' J. Lightw. Technol., vol. 33, pp. 2386-2391, 2015.
[32] Y. Wu, T. Zhang, Y. Rao and Y. Gong, 'Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators.' Sensors and Actuators B: Chemical, vol. 155, pp. 258-263, 2011.
[33] P. Wang, F. Gu, L. Zhang and L. Tong, 'Polymer microfiber rings for high-sensitivity optical humidity sensing.' Applied Optics, vol. 50, pp. G7-G10, 2011.
[34] M.A. Gouveia, P.E. Pellegrini, J.S. dos Santos, I.M. Raimundo and C.M. Cordeiro, 'Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor.' Applied Optics, vol. 53, pp. 7454-7461, 2014.
[35] Y.S. Chiam, K.S. Lim, S.W. Harun, S.N. Gan and S.W Phang, 'Conducting polymer coated optical microfiber sensor for alcohol detection.' Sensors and Actuators A: Physical, vol.205, pp. 58-62, 2014.
[36] X. Wu, F. Gu and H. Zeng, 'Palladium-coated silica microfiber knots for enhanced hydrogen sensing.' IEEE Photon. Technol. Lett.,vol. 27, pp. 1228-1231, 2015.
[37] X. Li and H. Ding, 'Temperature insensitive magnetic field sensor based on ferrofluid clad microfiber resonator.' IEEE Photon. Technol. Lett., vol. 26, pp. 2426-2429, 2014.
[38] X. Li and H. Ding, 'All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.' Optics Letters, vol. 37, pp. 5187-5189, 2012.
[39] L. Xiao, M.D.W. Grogan, S.G. Leon-Saval, R. Williams, R. England, W.J. Wadsworth and T.A. Birks, 'Tapered fibers embedded in silica aerogel.' Optics Letters, vol. 34, pp. 2724-2726, 2009.
[40] I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez and J. Villatoro 'Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer.' IEEE Photon. Technol. Lett., vol. 27, pp. 2591-2594, 2015.
[41] X. Zhang, M. Belal, G. Y. Chen, Z. Song, G. Brambilla, and T. P. Newson, 'Compact optical microfiber phase modulator,' Optics Letters, vol. 37, pp. 320–322, 2012.
[42] A. W. Snyder, 'Coupled-Mode Theory for Optical Fibers,' Journal of the Optical Society of America, vol. 62, pp. 1267-1277, 1972.
[43] M. Sumetsky, 'Optical fiber microcoil resonator,' Opt. Express, vol. 12, pp. 2303-2316, 2004.
[44] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, 'Rayleigh scattering in high-Q microspheres,' Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1051-1057, 2000.
[45] T. H. Shen, Fabrication of Two-layer Microcoil Resonators with Very High Quality Factors by Using Ultra-low Porpagation Loss Microfibers, in Graduate Institute of Photonics and Optoelectronics2013, National Taiwan University: Taipei.
[46] J.N. Lee, C. Park and George M. Whitesides. 'Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices.' Analytical Chemistry, vol. 75, pp. 6544-6554, 2003.
[47] C. Y. Chao and L. J. Guo, 'Design and optimization of microring resonators in biochemical sensing applications,' Journal of Lightwave Technology, vol. 24, pp. 1395-1402, 2006.
[48] R. Lorenzi, Y. Jung, and G. Brambilla, 'In-line absorption sensor based on coiled optical microfiber.' Appl. Phys. Lett., vol. 98, pp. 173504, 2011.
[49] C. Bentivoglio Ruiz, L. Machado, J. Volponi and E. Segura Pino, 'Oxygen inhibition and coating thickness effects on UV radiation curing of weatherfast clearcoats studied by photo-DSC.' Journal of Thermal Analysis and Calorimetry, vol. 75, pp. 507-512, 2004.
[50] Q. Wang, C. Du, J. Zhang, R. Lv and Y. Zhao, 'Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating.' Optics Communications, vol. 377, pp. 89-93, 2016.
[51] C.S. Park, K.I. Joo, S.W. Kang and H.R. Kim, 'A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity.' Journal of the Optical Society of Korea, vol. 15, pp. 329-334, 2011.
[52] Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren and J. Zhao, 'All-optical control of microfiber resonator by graphene's photothermal effect.' Appl. Phys. Lett., vol.108, pp. 171905, 2016
[53] Y. B. Huang, Fabrication of Schottky photodetector by using Si-cored fibers, in Graduate Institute of Photonics and Optoelectronics2015, National Taiwan University: Taipei.
[54] X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang and L. Hu, 'Demonstration of microfiber knot laser.' Appl. Phys. Lett., vol. 89, pp. 143513, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2557-
dc.description.abstract近來,微光纖線圈共振腔在非線性光學和光纖感測吸引許多目光。和以半導體製作的微共振腔相比,微光纖線圈共振腔擁有例如低傳輸損耗,容易和一般光纖元件結合等特點。透過增加線圈數或堆疊線圈,微光纖線圈共振腔可以達到相當高的品質因子。然而,沒有保護的微光纖線圈共振腔很容易受到外界環境干擾,限制了微光纖線圈共振腔的應用。因此,微光纖線圈共振腔的保護方法是本篇論文的主要焦點。
在此論文中,首先我們介紹微光纖線圈共振腔的製作過程和保護方法。我們利用改良的小型光纖抽絲塔,以氫氧焰作為熱源製作直徑3微米的微光纖。接著我們展示微光纖線圈共振腔的製作架構。透過具有超長工作距離的物鏡和CCD元件,我們可以即時觀測繞線過程,有助於儘早檢測出錯誤。具有良好同心度和穩定性的繞線系統使我們可以準確地控制微光纖線圈共振腔每圈的間隔。我們使用以正己烷稀釋過的聚二甲基矽氧烷作為微光纖線圈共振腔的包裝材料。稀釋過的聚二甲基矽氧烷擁有較低的黏滯性,方便在繞線過程中調整線圈。以此方法製作的微光纖線圈共振腔品質因子可以達到5 x 10^5,而且頻譜表現可以維持5天。
接著我們嘗試以聚二甲基矽氧烷包裝之微光纖線圈共振腔進行折射率感測。將微光纖線圈共振腔放置在一壓克力架構中,並以葡萄糖水溶液作為折射率變化。微光纖線圈共振腔的偵測極限為7 x 10^-4。為了增加微光纖線圈共振腔應用的潛力,我們將剩餘微光纖部分以紫外光固化膠覆蓋,進一步提升微光纖線圈共振腔的穩定性。如此微光纖線圈共振腔的表現可以維持長達一個月沒有明顯劣化。
zh_TW
dc.description.abstractRecently, microfiber coil resonators (MCR) have attracted much attention in nonlinear optics and optical sensing. Compared with the semiconductor based micro resonators, MCRs have attractive properties such as low propagation loss and easy connection with conventional optical fiber devices through their tapered sections. Moreover, by increasing coil turns or stacking microfiber turns, MCRs can achieve very high quality factor. However, an unpackaged MCR is easily affected by surrounding disturbance, which limits its applications. Therefore the methods to protect MCRs is the main focus of this work.
In this work, we firstly introduce fabrication process and protection method of MCR. A 3-μm diameter microfiber was produced by using a modified miniature fiber drawing tower. The hydrogen oxygen flame was applied as heat source. Then the experimental setup for fabricating MCR is demonstrated. With the extra long working distance objective and CCD, the coiling process could be observed in situ. This helps us early detect the faults during coiling process. The coiling system with good concentricity and stability helps us control the microfiber coil accurately. Polydimethylsiloxane (PDMS) diluted with hexane was used as package material for MCR. Hexane-diluted PDMS has lower viscosity so the microfiber coil could be turned around easily. The quality factor of PDMS-packaged MCR was 5 x 10^5 and could maintain for 5 days.
Next, we tried to use PDMS-packaged MCR as refractive index sensor. PDMS-packaged MCR was put in a PMMA structure and glucose solutions were used for different refractive index. The detection limit of PDMS-packaged MCR was about 7×10^-4 RIU. To increase the potential of practical applications, long-term stability of MCR was further improved by protecting microfibers with UV glue. The performance of MCR could maintain over a month without degradation.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:42:01Z (GMT). No. of bitstreams: 1
ntu-106-R02941002-1.pdf: 3150277 bytes, checksum: 7608f0183776a62c67907e2cf7dfc7ff (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Statement of Contribution v
CONTENT vi
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 5
1.2.1 Microfiber Resonator-based Sensors 5
1.2.2 Package Materials of Microfiber Device 6
1.3 Theory of MCRs 8
1.4 Organization of the Thesis 14
Chapter 2 Fabrication and Optical Characteristics of PDMS-packaged MCRs 15
2.1 Fabrication of PDMS-packaged MCRs 15
2.2 Optical Characteristics of PDMS-packaged MCRs 23
Chapter 3 Refractive Index Sensing and Long-term Stability Improvement 27
3.1 Experimental Setup of Refractive Index Sensing 27
3.2 Measurement Results and Discussion 33
3.3 Long-term Stability Improvement 43
Chapter 4 Conclusions and Future Work 50
References 52
dc.language.isoen
dc.subject微光纖封裝方法zh_TW
dc.subject折射率感測zh_TW
dc.subject微光纖zh_TW
dc.subject高品質因子zh_TW
dc.subject微光纖線圈共振腔zh_TW
dc.subjectmicrofiber package methoden
dc.subjecthigh quality factoren
dc.subjectmicrofiber coil resonatoren
dc.subjectmicrofiberen
dc.subjectrefractive index sensingen
dc.title應用於折射率感測的穩定封裝之微光纖線圈共振腔與其長時間穩定性提升zh_TW
dc.titleA Stable Packaged Microfiber Coil Resonator for Refractive Index Sensing and Its Long-term Stability Improvementen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖顯奎(Shien-Kuei Liaw),劉文豐(Wen-Fung Liu),黃念祖(Nien-Tsu Huang)
dc.subject.keyword微光纖,微光纖線圈共振腔,高品質因子,折射率感測,微光纖封裝方法,zh_TW
dc.subject.keywordmicrofiber,microfiber coil resonator,high quality factor,refractive index sensing,microfiber package method,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201700769
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-04-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf3.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved