Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱(Jungkai Alfred Chen)
dc.contributor.authorChih-Chi Chouen
dc.contributor.author周致圻zh_TW
dc.date.accessioned2021-06-08T06:19:27Z-
dc.date.copyright2006-11-21
dc.date.issued2006
dc.date.submitted2006-11-09
dc.identifier.citation[1] Alastair Craw, An introduction to motivic integration. Strings and Ge-ometry,
203-225, Clay Math. Proc. 3, Amer. Math. Soc., Providence,
RI, 2004.
[2] V. Batyrev. Non-Archimedean integrals and stringy Euler numbers of
log-terminal pairs. J. Eur. Math. Soc. 1, pages 5-33, (1999).
[3] V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical
singularities, Proc. Taniguchi Symposium 1997, In Integrable Systems
and Algebraic Geometry, Kobe/ Kyoto 1997, World Sci. Publ.
(1999), 1-32.
[4] V. I. Danilov, The Geometry of Toric Variety, Russian Math Surveys
33:2 (1978), 97- 154.
[5] V. Danilov and A. Khovanskii. Newton polyhedra and an algorithm for
computing Hodge-Deligne numbers. Math. USSR Izvestiya 29, pages
279-298, (1987).
[6] J. Denef, F. Loeser Germs of arcs on singular algebraic varieties and
motivic integration, Invent. Math. 135 (1999), no. 1, 201–232.
[7] W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies,
131. The William H. Roever Lectures in Geometry. Princeton University
Press, Princeton, NJ, 1993.
[8] M. Kontsevich, Lecture at Orsay (december 7, 1995).
[9] J. Koll´ar, Singularities of Pairs, in Algebraic Geometry, Santa Cruz 1995,
volume 62 of Proc. Symp. Pure math. Amer. Math. Soc. 1997, 221-286
[10] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal
Model Program, Adv. Studies in Pure Math. 10 (1987), 283-360.
[11] L. Ein, R. Lazarsfeld, M. Mustat¸ˇa Contact Loci in Arc Spaces.
arXiv:math.AG/0303268 2004.
[12] K. Matsuki, Introduction to the Mori Program. Springer-Verlag, (2002).
[13] M. Mustat¸ˇa, Jet Schemes of Locally Complete Intersection Canonical
Singularities, Invent. Math. 145 (2001), no. 3, 397–424
[14] M. Mustat¸ˇa, Singularities of Pairs via Jet schemes, J. Amer. Math. Soc.
15 (2002), 599-615.
[15] J. Nash, Arc structure of singularities, Duke Math J., 81 (1995),31-38.
[16] M. Reid, The McKay correspondence and the physicists’ Euler number
conjecture. Lecture notes given at the University of Utah (Sept.), and
MSRI (Nov.), (1992).
[17] M. Reid, La Correspondence De McKay, Se ´ minaire Bourbaki, 52.
[18] M. Reid, The McKay correspondence and the physicists’ Euler number,
Lect. Notes given at Univ. of Utah (1992) and MSRI(1992).
[19] Yukari Ito and M. Reid, The McKay Correspondence for finite Subgroups
of SL(3,C), arXiv:math.AG/9411010 1996.
[20] W. Veys, Arc Spaces, Motivic Integration and Stringy Inverients,
arXiv:math.AG/0401374 2004.
[21] M. Reid, Young Person’s Guide to Canonical Singularities, Algebraic
Geometry,V 46, Bowdoin 1985, Proc. of Symposia in Pure Math.
[22] K. Watanabe. Certain invariant subrings are Gorenstein I and II. Osaka Journal 11, pages 1-8 and 379-388, (1974).
[23] O. Zariski, P Samuel, Commutative Algebra, Volume 2. Princeton, N.J. Van Nostrand, 1958.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25575-
dc.description.abstractIn this report, we discuss the topic of arc space and motivic inte-gration
, including some important properties such as the formula of
changing variable. With this formula we review Kontsevich’s theorem
which states that the Hodge number of crepant resolution is indepen-dent
of resolution. Besides, we also review Mustat¸ˇ a’s work that using
the knowledge of arc space and motivic integration to give a differ-ent
view toward log canonical threshold. At last, Batyrev’s work of
proving McKay correspondence is discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:19:27Z (GMT). No. of bitstreams: 1
ntu-95-R93221033-1.pdf: 327233 bytes, checksum: 84832fa10b93d67c9e58af4c02a72330 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 3
2 Arc Space and Motivic Intergration 3
2.1 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Arc Space and Motivic Measure . . . . . . . . . . . . . . . . . 5
2.3 Motivic Integration . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Log Canonical Threshold 17
3.1 Introduction to the Main Theorem . . . . . . . . . . . . . . . 17
3.2 Some Geometry Properties of Arc Space . . . . . . . . . . . . 20
3.3 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . 22
4 McKay Correspondence 23
4.1 Special Case for Toric Variety . . . . . . . . . . . . . . . . . . 24
4.2 Some Lemmas and Definitions . . . . . . . . . . . . . . . . . . 29
4.2.1 Log Pair (X, X) . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Orbifold E − function . . . . . . . . . . . . . . . . . . 30
4.3 Batyrev’s proof of McKay correspondece . . . . . . . . . . . . 35
5 References 38
dc.language.isoen
dc.title弧空間上的積分理論及應用zh_TW
dc.titleOn motivic integration and some of its applicationsen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡宜洵,王金龍
dc.subject.keyword弧空間,zh_TW
dc.subject.keywordmotivic integration,en
dc.relation.page40
dc.rights.note未授權
dc.date.accepted2006-11-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
319.56 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved