Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢
dc.contributor.authorShiu-Fang Yenen
dc.contributor.author顏秀芳zh_TW
dc.date.accessioned2021-06-08T06:19:11Z-
dc.date.copyright2006-12-15
dc.date.issued2006
dc.date.submitted2006-12-06
dc.identifier.citation陸、參考文獻
1. R. R. Tummala and E. J. Rymaszewski, “Microelectronic Packaging Handbook”, Van Nostrand Reinhold , 1989
2. J. H. Lau, “ Ball Grid Array Technology”, by McGraw-Hill , 1995
3. R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, by Chapman , 1997
4. Jay J. Liu, Howard Berg, Yenting Wen, Shailesh Mulgaonker, Reed Bowlby, “Plastic Ball Grid Array (PBGA) Overview”, Materials Chemistry and Physics, 40, 1995, pp.236-244
5. N. Koopman, “Flip Chip Interconnections”, Concise Encyclopedia of Semiconducting Materials and Relatived Technologies, Pergamon Press, London,1992, p.184.
6. D. P. Seraphim, R. C. Lasky and C-Y. Li, “Principle of Electronic Package”, by McGraw-Hill
7. J.W. Morris. Jr, J.L. Freer Goldstein, Z. Mei“Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solder”, July 1993, JOM , p25-27.
8. B. Trumble, “ Get the Lead Out ”, IEEE Spectrum, May 1998, pp.55-60
9. P. Zarrow, “ Lead-Free: Don’t Fight a Fact, Deal with it! ”, Circuit Assembly, August 1999, pp.18-20.
10. J. Glazer, International Materials Reviews, Vol. 40, No. 2, 1995, p. 65.
11. J. Y.Tasi, and C.R. Kao, 2002 Int'l Symposium on Electronic Materials and Packaging,pp.271-275
12. C. M. Chuang and K. L. Lin, J. Electron. Mater. 32, 1426 (2003).
13. R. F. Pinizzotto, E. G. Jacobs, Y. Wu, J.A.Sees, L.A. Foster, and C. Pouraghabagher, J. Electron. Mater. 22, 355 (1993).
14. C. C. Young, J. G.. Huh, and S. Y. Tsai, J. Electron. Mater. 30, 1241 (2001).
15. C. M. Chuang, P. C. Shi and K. L. Lin, 2002 Int'l Symposium on Electronic Materials and Packaging, pp. 360-365.
16. Iver E. Anderson, Özer Ünal, Tamara E. Bloomer and James C. Foley, “Effects of Transition Metal Alloying on Microstructural Stability and Mechanical Properties of Tin-Silver-Copper Solder Alloys,” Proc. Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM 3) (The Minerals, Metals and Materials Society, 1998)
17. F. Guo, J. P. Lucas, K. N. Subramanian, and T. R. Bieler, “Creep Properties of Eutectic Sn-3.5Ag Solder Joints Reinforced with Mechanically Incorporated Ni Particles”, Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1222-1227.
18. Karl Seelig and David Suraski, “The Status of Lead-Free Solder Alloys,” Proc. 50th IEEE 2000 Electronic Components and Technology Conference (May 21-24, 2000), Las Vegas, NV
19. I. Artaki, D.W. Finley, A.M. Jackson, U. Ray and P.T. Vianco, “Wave Soldering with Pb-Free Solders,” Proc. Surface Mount International (San Jose, CA, August 27-31, 1995), p. 495.
20. Hwa-teng Lee, Ming-hung Chen, Huei-mi Jao and Chin-jui Hsu, J.Electron. Mater. 9, 1048(2004)
21. B. L. Chen and G, Y, Li, “Influence of Sb on IMC Growth in Sn-Ag-Cu-Sb Pb-free Solder Joints in Reflow Process, Thin Solid Films, 462-463(2004) pp. 395-401.
22. Dennis R. Olsen and Howard M. Berg, IEEE Tranactions on components, Hybrids, and Manufacturing Technology, Chmt-2,2,7,1979
23. Y. Kariya and M. Otsuka, J.Electron. Mater. 27, 866(1998)
24. Rao Mahidhara, “A Primer on Lead-Free Solder,” Chip Scale Review (March-April 2000)
25. Y. Mutoh, J. Zhao, Y. Miyashita, C. Kanchanomai, Sold. Surf. Mount Technol., 14(2002), 37
26. M. L. Huang, C. M.L.Wu, J. K. L. Lai, and Y. C. Chan, J.Electron. Mater. 29, 8, 1021(2000)
27. Masataka Nishiura, Akihiro Nakayama, Sigeaki Sakatani, Yasuhiro Kohara, Keisuke Uenishi and Kojiro F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-Free Solders”, Materials Transactions, Vol. 43, No. 8 (2002) p1802-1807.
28. 28.. W. Gayle, G. Becka, J. Badgett“High Temperature Lead-Free Solder for Microelectronic” June 2001, JOM , p28-38.
29. Jie Zhao, Lin Qi, Xiu-min Wang, and Lai Wang, Journal of alloys and compounds, 375, 196-201, 2004
30. Qi Lin, Zhao Jie, , and Han Shuangqi, IEEE, Eco Design, (2003) 265-269
31. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, Vol. 31, No. 5, 2002, pp. 456-465.
32. Y. Kariya, T. Morihata, E. Hazawa, and M. Otsuka, “Assessment of Low-Cycle fatigue Life of Sn-3.5mass%Ag-X(X=Bi or Cu) Alloy by Strain Range Partitioning Approach”, Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1184-1189.
33. S. K. Kang, W. K Ghoi, M. J. Yim, and D.Y. Shih, “Studies of the Mechanical and Electrical Properties of Lead-Free Solder Joints”, Journal of Electronic Materials, Vol. 31, No. 11, 2002, p1292-1303..
34. Y. Kariya and M. Otsuka “Mechanical Fatigue Characteristic of Sn-3.5Ag-X(X=Bi, Cu, Zn and In) Solder Alloys”, Journal of Electronic Materials”, Vol. 27, No 11, 1998, p1229-1235.
35. I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terptra, “Microstructural Modification and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying”, Journal of Electronic Materials, Vol. 31, No. 11, 2002, pp. 1166-1174.
36. O. Unal, I. E. Anderson, J. L. Harringa, R, L, Terpstra, B. A. Cook, and J. C.Foley, “Application of an Asymmetrical Four Point Bend Shear Test to Solder Joints”, Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1206-1213.
37. L. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra, and O. Unal, “Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1050-1059.
38. B. A. Cook, I.E. Anderson, J. L. Harringa, and R. L. Terpstra, “Effect of Heat Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-Free Solder Alloys”, Journal of Electronic Materials, Vol. 31, No. 11, 2002
39. M. Yamashita, S. Tada, and K. ShioKawa, (Fuzi Electric Co.): Solder Alloys, US Patent 6,179,935B1(2001).
40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25569-
dc.description.abstract近年來許多相關研究報導在無鉛銲錫添加微量稀土元素可改善其潤濕性與機械性質,中國大陸有意將其納入China ROHS規範,然而在運用到真實的接點時,還有許多效應仍待進一步確認,以評估此無鉛銲錫的取代性。因此本論文使用Sn3Ag0.5Cu-XCe(X=0.1,0.25, 0.5,1.0wt%)無鉛銲錫之球格陣列構裝接點作為研究,第一部份探討添加不同含量稀土元素添加對銲錫熔點、界面介金屬反應及高溫時效後推球強度之影響,第二部份為錫鬚成長特性研究,以更進一步建立此稀土添加之無鉛銲錫的錫鬚成長機構。
研究結果顯示,添加稀土元素Ce可以減緩Ag3Sn顆粒粗大化並抑制時效後推球強度下降,有效改善此銲錫的機械性質,其中以0.25 wt%添加效果最好。在固固反應中,稀土元素添加提高了Cu6Sn5與Cu3Sn成長活化能,使Cu6Sn5與Cu3Sn的成長受溫度影響較大。在添加稀土元素後,錫球內部可觀察到CeSn3介金屬,CeSn3氧化後可觀察到錫鬚形成,導致此種無鉛銲錫在使用上將因可靠度而受到限制。
本研究中的錫鬚型態可分為細長狀(fiber)、柱狀(column)、粗短花狀(flower-cluster)與山丘狀(hillock),其中細長狀錫鬚中又分為直徑較細的TypeI錫鬚(0.1-0.5μm)與較粗的TypeII錫鬚(1μm)兩種。而提高相對濕度會使錫鬚型態由細長狀轉變成短花狀,提高溫度轉變成山丘狀,提高溫度也會使細長狀錫鬚數目減少、成長速度變快、直徑變大與平均長度變短,而低溫度5℃下與真空10-2torr下則可抑止CeSn3氧化與錫鬚生成。本研究亦藉由橫截面與氧化性質歸納出此稀土添加之無鉛銲錫的錫鬚成長機構為CeSn3氧化導致體積膨脹與外來氧原子擴散,使周圍銲錫基地與CeSn3區域承受壓應力所致。
zh_TW
dc.description.abstractRecently, the addition of a trace amount of rare earth elements is reportedly able to considerably improve the wetting and mechanical properties of mast of these Pb-free solder, related researches have just gotten underway is very recent years and China government are willing to arrange this Ce-doped solder into China ROHS. However, to apply this Ce-doped solder into a real package production, a lot of these efforts are still to be clarified through further experiments so that this Ce-doped solder will be confirmed as the Pb-free solder replacer. In the first part of this study is concerned with the Sn3Ag0.5Cu-XCe(X=0.1, 0.25, 0.5, 1.0wt%) Pb-free solder joints in Ball Grid Array (BGA) Package, while focusing on the melting point, interfacial intermetallic reactions and shear test after high temperature aging. The second part of this study is to clarify the mechanism of tin whisker formation through the whisker growth properties.
From the experimental results, it is evidenced that the Ce-dope is effectively to slow down the coarsening of Ag3Sn precipitates in the solder matrix and the degradation of bonding strengths after high temperature aging. For the solid interfacial reactions, Ce-dope increases the growth activation energy of Cu6Sn5 and Cu3Sn, which implies that the growth reaction of Cu6Sn5 and Cu3Sn-intermetallics is much more sensitive to the aging temperature. In the microstructure of solder matrix, Ce-dope results in the formation of precipitated CeSn3 clusters in the reflowed solder matrix and the oxidation of CeSn3 clusters makes the tin whisker grow. However, this Ce-doped solder will be restricted by the reliable issue of tin whisker growth.
In this study, the morphology of whiskers observed can be summarized as fiber, column, flower-cluster and hillock. Different diameter fiber whiskers are Types I and II, which can coexist on the same CeSn3 oxide layer. In addition, the morphology of whiskers will transfer from fiber into flower-cluster whisker with increasing related humidity and into hillock whisker with increasing temperature. The growth rate and diameter of fiber whisker will be increased by increasing temperature, but the average length decreased. Lower temperature at 5℃ and 10-2 torr vacuum can inhibit the whisker formation. Through the relationship between cross section observation and oxidation behavior at various temperatures, the mechanism of abnormal tin whisker formation in this Ce-doped solder can be attributed to the compressive stress induced by the diffusion of oxygen into the CeSn3 precipitate clusters in the solder, which squeezes the Sn atoms in the Ce-depleted region of CeSn3 phase out of the oxide layer.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:19:11Z (GMT). No. of bitstreams: 1
ntu-95-F91527048-1.pdf: 46786249 bytes, checksum: 59d4b857a20c4c620aa5edd36bbe7d4d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄 ......Ⅰ
圖目錄 ......Ⅳ
表目錄 ......Ⅹ
壹、研究動機 ......1
貳、理論基礎 ......4
2.1 電子構裝之演進與球格陣列構裝 ......4
2.2 無鉛銲錫之發展 ......6
2.2.1 銲錫無鉛化b ......6
2.2.2無鉛銲錫添加第四元元素之研究 ......7
2.2.2.1 添加Ni元素之影響 ......7
2.2.2.2 添加Sb元素之影響 ......8
2.2.2.3 添加Bi元素之影響 ......9
2.2.2.4 其添加它元素之影響 ......11
2.2.3無鉛銲錫添加稀土元素之研究 ......13
2.2.3.1添加稀土元素對銲錫物理特性之影響 ......13
2.2.3.2添加稀土元素對介金屬成長之影響 ......14
2.2.3.3添加稀土元素對銲錫機械性質之影響 ......16
2.2.3.4 高含量稀土的添加 ......17
2.3 界面反應理論 ......18
2.4 錫鬚理論 ......19
2.4.1 錫鬚發展 ......19
2.4.2 錫鬚之成長機構 ......20
2.4.2.1 差排理論 ......21
2.4.2.2 再結晶理論 ......22
2.4.2.3 壓應力理論 ......23
2.4.2.3.1 界面擴散與反應引起之應力 ......24
2.4.2.3.2 錫層與基材熱膨脹係數不匹配所引起之應力 ......28
2.4.2.3.3 電遷移導致原子擴散所產生之壓應力 ......30
2.4.2.4 氧化層理論 ......30
2.4.3錫鬚測試規範 ......32
参、實驗方法 ......39
3.1 銲錫之配製與分別 ......39
3.2 球格陣列構裝之界面反應與推球強度 ......39
3.3 錫鬚成長觀察 ......41
肆、結果與討論 ......45
4.1 Sn-3Ag-0.5Cu-XCe (X=0、0.1、0.25、0.5、1.0)銲錫球格陣列構裝研究 ......45
4.1.1 Sn-3Ag-0.5Cu-XCe銲錫特性 ......45
4.1.1.1 Sn-3Ag-0.5Cu-XCe銲錫熔點 ......45
4.1.1.2 Sn-3Ag-0.5Cu-XCe銲錫金相組織 ......45
4.1.2 Sn-3Ag-0.5Cu-XCe銲錫球格陣列化銀基板構裝研究 ......46
4.1.2.1 Sn-3Ag-0.5Cu-XCe銲球接點之界面反應 ......46
4.1.2.2 Sn-3Ag-0.5Cu-XCe銲球接點界面反應之動力學分析 ......49
4.1.2.3 Sn-3Ag-0.5Cu-XCe銲球接點之推球強度 ......50
4.2 Sn-3Ag-0.5Cu稀土元素添加銲錫之錫鬚成長研究 ......52
4.2.1 室溫下錫鬚成長 ......52
4.2.1.1 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之室溫下錫鬚成長 ......52
4.2.1.2 Sn-3Ag-0.5Cu-X(=0.1、0.25、1.0)Ce銲錫經迴銲後之室溫下錫鬚成長 ......56
4.2.1.3 Sn6.6X(=La、Lu、M)銲錫經迴銲後之室溫下錫鬚成長 ......57
4.2.1.4 Sn-3Ag-0.5Cu-0.5Ce銲錫經時效後之室溫下錫鬚成長 ......58
4.2.1.5 Sn-3Ag-0.5Cu-0.5Ce銲錫球於化金基板在室溫下錫鬚成長 ......58
4.2.2 不同溫度下錫鬚成長 ......60
4.2.2.1 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之高溫50℃下錫鬚成長 ......60
4.2.2.2 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之高溫100℃下錫鬚成長......62
4.2.2.3 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之高溫150℃下錫鬚成長 ......63
4.2.2.4 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之低溫5℃下錫鬚成長 ......64
4.2.3 不同氣氛下錫鬚成長 ......66
4.2.3.1 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之相對濕度90%室溫下錫鬚成長 ......66
4.2.3.2 Sn-3Ag-0.5Cu-0.5Ce銲錫經迴銲後之室溫下真空10-2torr中錫鬚成長 ......68
4.2.4 錫鬚性質比較 ......69
4.2.4.1錫鬚成長三階段下的型態比較 ......69
4.2.4.2錫鬚尺寸(直徑、長度) ......71
4.2.4.3短時間下觀察錫鬚成長 ......72
4.2.4.4細長狀錫鬚之成長性質(密度、成長速度) ......74
4.2.4.5 山丘狀錫鬚之成長性質 ......75
4.2.5 稀土添加導致錫鬚生成的成長機構 ......77
4.2.5.1 橫截面觀察CeSn3氧化 ......77
4.2.5.2 錫鬚成長之驅動力(壓應力) ......78
4.2.5.3 稀土添加導致錫鬚生成之成長機構 ......79
4.2.5.4 成份分析(EDX) ......80
4.2.5.5 錫鬚成長速度 ......81
伍、結論 ......170
陸、參考文獻 ......172
附錄、作者簡介 ......187
dc.language.isozh-TW
dc.titleSn3Ag0.5Cu無鉛銲錫添加稀土元素Ce之球格陣列構裝界面反應與錫鬚成長研究zh_TW
dc.titleStudies on the Interfacial Reactions and Whisker Growth in Ce-Doped Sn3Ag0.5Cu Pb-free Solder Ball Grid Array Packageen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee施漢章,林招松,王彰盟,昝世蓉
dc.subject.keyword稀土添加,無鉛銲錫,界面反應,錫鬚成長,球格陣列構裝,zh_TW
dc.subject.keywordRare-earth element,Sn3Ag0.5Cu0.5Ce solder,interfacial reaction,CeSn3 phase,tin whiskers,en
dc.relation.page186
dc.rights.note未授權
dc.date.accepted2006-12-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
45.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved