請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25542
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華(Shing Hwa Liu) | |
dc.contributor.author | Ya-Wen Chen | en |
dc.contributor.author | 陳雅雯 | zh_TW |
dc.date.accessioned | 2021-06-08T06:17:57Z | - |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-23 | |
dc.identifier.citation | Part1:
1. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247, 2000 2. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E: Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 300:216–222, 2003 3. Kajimoto Y, Kaneto H: Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011:168–176, 2004 4. Piro S, Anello M, Di Pietro C, Lizzio MN, Patane G, Rabuazzo AM, Vigneri R, Purrello M, Purrello F: Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51:1340–1347, 2002 5. Cantley LC: The phosphoinositide 3-kinase pathway (Review). Science 296:1655–1657, 2002 6. Zawalich WS, Zawalich KC: A link between insulin resistance and hyperinsulinemia: inhibitors of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but not obese, rats. Endocrinology 141:3287–3295, 2000 7. Zawalich WS, Tesz GJ, Zawalich KC: Inhibitors of phosphatidylinositol 3-kinase amplify insulin release from islets of lean but not obese mice. J Endocrinol 174:247–258, 2002 8. Esposito F, Chirico G, Montesano Gesualdi N, Posadas I, Ammendola R, Russo T, Cirino G, Cimino F: Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J Biol Chem 278:20828–20834, 2003 9. Gorin Y, Ricono JM, Kim NH, Bhandari B, Choudhury GG, Abboud HE: Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 285:F219–F229, 2003 10. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK: Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704, 1999 11. Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15, 2002 12. Stohs SJ, Bagchi D: Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336, 1995 13. Sarafian TA: Methylmercury-induced generation of free radicals: biological implications. Met Ions Biol Syst 36:415–444, 1999 14. Ercal N, Gurer-Orhan H, Aykin-Burns N: Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539, 2001 15. Valko M, Morris H, Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208, 2005 16. Mahboob M, Shireen KF, Atkinson A, Khan AT: Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. J Environ Sci Health B 36:687–697, 2001 17. Huang YL, Cheng SL, Lin TH: Lipid peroxidation in rats administrated with mercuric chloride. Biol Trace Elem Res 52:193–206, 1996 18. Miller DM, Woods JS: Urinary porphyrins as biological indicators of oxidative stress in the kidney: interaction of mercury and cephaloridine. Biochem Pharmacol 46:2235–2241, 1993 19. Reus IS, Bando I, Andres D, Cascales M: Relationship between expression of HSP70 and metallothionein and oxidative stress during mercury chloride induced acute liver injury in rats. J Biochem Mol Toxicol 17:161–168, 2003 20. Clarkson TW, Magos L, Myers GJ: The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med 349:1731–1737, 2003 21. Aschner M, Walker SJ: The neuropathogenesis of mercury toxicity. Mol Psychiatry 7 (Suppl. 2):S40–S41, 2002 Part2: 1. Clarkson TW, Magos L, and Myers GJ: The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 349: 1731-1737, 2003 2. Takeuchi T, Morikawa N, Matsumoto H, and Shiraishi Y: A pathological study of Minamata disease in Japan. Acta Neuropathol. (Hist. Arch.) 2: 40-57, 1962 3. Kunimoto M: Methylmercury induces apoptosis of rat cerebellar neurons in primary culture. Biochem. Biophys. Res. Commun. 204: 310-317, 1994 4. Limke TL, Bearss JJ, and Atchison WD: Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol. Sci. 80:60-68, 2004 5. Issa Y, Watts DC, Duxbury AJ, Brunton PA, Watson MB, and Waters CM: Mercuric chloride: Toxicity and apoptosis in a human oligodendroglial cell line MO3.13. Biomaterials 24: 981-987, 2003 6. Reichl, F. X., Walther, U. I., Durner, J., Kehe, K., Hickel, R., Kunzelmann, K. H., Spahl, W., Hume, W. R., Benschop, H., and Forth, W. (2001) Cytotoxicity of dental composite components and mercury compounds in lung cells. Dent. Mater. 17, 95-101. 7. Kuo TC, and Lin-Shiau SY: Early acute necrosis and delayed apoptosis induced by methyl mercury in murine peritoneal neutrophils. Basic Clin. Pharmacol. Toxicol. 94: 274-281, 2004 8. InSug O, Datar S, Koch CJ, Shapiro IM, and Shenker BJ: Mercuric compounds inhibit human monocyte function by inducing apoptosis: Evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124:211-224, 1997 9. Shenker BJ, Datar S, Mansfield K, and Shapiro IM: Induction of apoptosis in human T-cells by organomercuric compounds: A flow cytometric analysis. Toxicol. Appl. Pharmacol. 143: 397-406, 1997 10. Uchino M, Tanaka Y, Ando Y, Yonehara T, Hara A, Mishima I, Okajima T, and Ando M: Neurologic features of chronic minamata disease (organic mercury poisoning) and incidence of complications with aging. J. Environ. Sci. Health B 30: 699-715, 1995 11. Takeuchi T, and Eto K: Pathology and pathogenesis of Minamata disease. In Minamata Disease-Methyl Mercury Poisoning in Minamata and Niigata, Japan (Tsubaki, T., and Irukayama, K., Eds.) pp 103-141, Kodansya, Tokyo, 1997 12. Shigenaga K: Pancreatic islet injury induced by methyl mercuric chloride light and electron microscopic studies. Kumamoto Med J. 29: 67-81, 1976 13. Buttke TM, and Sandstrom PA: Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7-10, 1994 14. Belletti S, Orlandin, G, Vettori MV, Mutti A, Uggeri J, Scandroglio R, Alinovi R, and Gatti R: Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J. Neurosci. Res. 70, 703-711, 2002 15. Shenker B J, Guo TL, O I, and Shapiro I M: Induction of apoptosis in human T-cells by methyl mercury: Temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol. Appl. Pharmacol. 157: 23-35, 1999 16. Kajimoto Y, and Kaneto H: Role of oxidative stress in pancreatic beta-cell dysfunction. Ann. N. Y. Acad. Sci. 1011: 168-176, 2004 17. Hotta M, Yamato E, and Miyazaki JI: Oxidative stress and pancreatic beta-cell destruction in insulin-dependent diabetes mellitus. In Antioxidants and Diabetes Management (Packer, L., Rosen, P., Tritschler, H., King, G. L., and Azzi, A., Eds.) pp 265-274, Marcel Dekker, New York, 2000 18. Zhang HJ, Walseth TF, and Robertson RP: Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes 38: 44-48, 1989 19. Lacy PE, and Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16: 35-39, 1967 20. Lernmark A: The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 10: 431-438, 1974 21. Ho FM, Liu SH, Liau CS, Huang PJ, and Lin-Shiau SY: High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101: 2618-2624, 2000 22. Yen CC, Liu SH, Chen WK, Lin RH, and Lin-Shiau SY: Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J. Anal. Toxicol. 26: 286-295, 2002 23. Yuan X, Shan Y, Zhao Z, Chen J, and Cong Y: G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol. J. 17: 66-71, 2005 24. Vermes I, Haanen C, Steffens-Nakken H, and Reutelingsperger C: A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184: 39-51, 1995 25. Inoue M, Sato EF, Nishikawa M, Hiramoto K, Kashiwagi A, and Utsumi K: Free radical theory of apoptosis and metamorphosis. Redox Rep. 9: 237-247, 2004 26. Le Bras M, Clement MV, Pervaiz S, and Brenner C: Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol. Histopathol. 20: 205-219, 2005 27. Shenker BJ, Pankoski L, Zekavat A, and Shapiro IM: Mercury-induced apoptosis in human lymphocytes: Caspase activation is linked to redox status. Antioxid. Redox Signaling 4: 379-389, 2002 28. Tiedge M, Lortz S, Drinkgern J, and Lenzen S: Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46: 1733-1742, 1997 29. Rolo AP, and Palmeira CM: Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212: 167-178, 2006 30. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J: Redox control of cell death. Antioxid. Redox Signaling 4: 405-414, 2002 31. Bloom GD, Hellman B, Idahl LA, Lernmark A, Sehlin J, and Taljedal IB: Effects of organic mercurials on mammalian pancreatic beta-cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem. J. 129: 241-254, 1972 Part3: 1. Shenker BJ, Guo TL, Shapiro IM: Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res 84:89-99, 2000 2. Christensen MM, Ellermann-Eriksen S, Rungby J, Mogensen SC: Influence of mercuric chloride on resistance to generalized infection with herpes simplex virus type 2 in mice. Toxicology 114:57-66, 1996 3. Silbergeld EK, Sacci JB, Jr., Azad AF: Mercury exposure and murine response to Plasmodium yoelii infection and immunization. Immunopharmacol Immunotoxicol 22:685-695, 2000 4. Liu SH, Lin-Shiau SY: Mercuric chloride alters the membrane potential and intracellular calcium level in mouse pancreatic islet cells. J Toxicol Environ Health A 65:317-326, 2002 5. Bloom GD, Hellman B, Idahl LA, Lernmark A, Sehlin J, Taljedal IB: Effects of organic mercurials on mammalian pancreatic -cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem J 129:241-254, 1972 6. Shenker BJ, Guo TL, O I, Shapiro IM: Induction of apoptosis in human T-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol Appl Pharmacol 157:23-35, 1999 7. Hussain S, Rodgers DA, Duhart HM, Ali SF: Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. J Environ Sci Health B 32:395-409, 1997 8. Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R: Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol 80:370-377, 2006 9. Heil J, Reifferscheid G, Waldmann P, Leyhausen G, Geurtsen W: Genotoxicity of dental materials. Mutat Res 368:181-194, 1996 10. MacLellan WR, Schneider MD: Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137-144, 1997 11. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 281:1305-1308, 1998 12. Savill J, Fadok V, Henson P, Haslett C: Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131-136, 1993 13. Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3-15, 1995 14. Zhang HJ, Walseth TF, Robertson RP: Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes 38:44-48, 1989 15. Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH: The Role of Phosphoinositide 3-Kinase/Akt Signaling in Low-Dose Mercury-Induced Mouse Pancreatic {beta}-Cell Dysfunction In Vitro and In Vivo. Diabetes 55:1614-1624, 2006 16. Johnson VJ, Kim SH, Sharma RP: Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol Sci 83:329-339, 2005 17. Yen CC, Liu SH, Chen WK, Lin RH, Lin-Shiau SY: Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J Anal Toxicol 26:286-295, 2002 18. Issa Y, Watts DC, Duxbury AJ, Brunton PA, Watson MB, Waters CM: Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line MO3.13. Biomaterials 24:981-987, 2003 19. Rahman I, Smith CA, Lawson MF, Harrison DJ, MacNee W: Induction of gamma-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells. FEBS Lett 396:21-25, 1996 20. Kajimoto Y, Kaneto H: Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011:168-176, 2004 21. Kim SH, Sharma RP: Mercury-induced apoptosis and necrosis in murine macrophages: role of calcium-induced reactive oxygen species and p38 mitogen-activated protein kinase signaling. Toxicol Appl Pharmacol 196:47-57, 2004 22. Wolf MB, Baynes JW: Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals, 2006 23. Lech T, Goszcz H: Poisoning from aspiration of elemental mercury. Clin Toxicol (Phila) 44:333-336, 2006 Part4: 1. Lebovitz HE: Type 2 diabetes: an overview. Clin Chem 45:1339-1345, 1999 2. Gerich JE: The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 19:491-503, 1998 3. Riddle MC: Tactics for type II diabetes. Endocrinol Metab Clin North Am 26:659-677, 1997 4. Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K, Vanderbilt CA, Cobb MH: Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic beta cells. J Biol Chem 278:32517-32525, 2003 5. Schaeffer HJ, Weber MJ: Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435-2444, 1999 6. Lewis TS, Shapiro PS, Ahn NG: Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49-139, 1998 7. Liu W, Schoenkerman A, Lowe WL, Jr.: Activation of members of the mitogen-activated protein kinase family by glucose in endothelial cells. Am J Physiol Endocrinol Metab 279:E782-790, 2000 8. Gibson TB, Lawrence MC, Gibson CJ, Vanderbilt CA, McGlynn K, Arnette D, Chen W, Collins J, Naziruddin B, Levy MF, Ehrlich BE, Cobb MH: Inhibition of glucose-stimulated activation of extracellular signal-regulated protein kinases 1 and 2 by epinephrine in pancreatic beta-cells. Diabetes 55:1066-1073, 2006 9. Oh H, Lee HS, Kim T, Chai KY, Chung HT, Kwon TO, Jun JY, Jeong OS, Kim YC, Yun YG: Furocoumarins from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med 68:463-464, 2002 10. Lee YY, Lee S, Jin JL, Yun-Choi HS: Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch Pharm Res 26:723-726, 2003 11. Lee S, Lee YS, Jung SH, Shin KH, Kim BK, Kang SS: Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res 26:727-730, 2003 12. Lee S, Shin DS, Kim JS, Oh KB, Kang SS: Antibacterial coumarins from Angelica gigas roots. Arch Pharm Res 26:449-452, 2003 13. Kang SY, Lee KY, Sung SH, Kim YC: Four new neuroprotective dihydropyranocoumarins from Angelica gigas. J Nat Prod 68:56-59, 2005 14. Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH: The Role of Phosphoinositide 3-Kinase/Akt Signaling in Low-Dose Mercury-Induced Mouse Pancreatic {beta}-Cell Dysfunction In Vitro and In Vivo. Diabetes 55:1614-1624, 2006 15. Fernandez LA, Hatch EW, Armann B, Odorico JS, Hullett DA, Sollinger HW, Hanson MS: Validation of large particle flow cytometry for the analysis and sorting of intact pancreatic islets. Transplantation 80:729-737, 2005 16. Seri K, Sanai K, Kurashima K, Imamura Y, Akita H: (R)-ACX is a novel sufonylurea compound with potent, quick and short-lasting hypoglycemic activity. Eur J Pharmacol 389:253-256, 2000 17. Gray E, Muller D, Squires PE, Asare-Anane H, Huang GC, Amiel S, Persaud SJ, Jones PM: Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: involvement of protein kinases. J Endocrinol 190:703-710, 2006 18. Noguchi H, Matsumoto S: Protein transduction technology offers a novel therapeutic approach for diabetes. J Hepatobiliary Pancreat Surg 13:306-313, 2006 19. Yajima H, Ikeshima E, Shiraki M, Kanaya T, Fujiwara D, Odai H, Tsuboyama-Kasaoka N, Ezaki O, Oikawa S, Kondo K: Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J Biol Chem 279:33456-33462, 2004 20. Nelson SE, Palumbo PJ: Addition of insulin to oral therapy in patients with type 2 diabetes. Am J Med Sci 331:257-263, 2006 21. Nehlin JO, Mogensen JP, Petterson I, Jeppesen L, Fleckner J, Wulff EM, Sauerberg P: Selective PPAR agonists for the treatment of type 2 diabetes. Ann N Y Acad Sci 1067:448-453, 2006 22. Zozulinska D, Wierusz-Wysocka B: Type 2 diabetes mellitus as inflammatory disease. Diabetes Res Clin Pract, 2006 23. Sajan MP, Bandyopadhyay G, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV: Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochem J 362:665-674, 2002 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25542 | - |
dc.description.abstract | 第一部份:
目前關於氧化性壓力和phosphoinositide 3-kinase (PI3K)訊號傳遞的互動,和對於胰臟胰島細胞分泌胰島素功能之影響仍不清楚。而汞已知是一種可導致氧化性傷害的毒性金屬。低濃度(submicromolar-concentration)的氯化汞 (mercuric chloride, HgCl2)或是甲基汞(methylmercury, MeHg)在胰島細胞衍生出的HIT-T15細胞株和由小鼠胰臟分離出的胰島細胞(islet cells),會引發自由基(reactive oxygen species, ROS)的增加以及降低胰島素的分泌,汞化合物會增加phosphoinositide 3-kinase (PI3K)的活性以及其下游AKT蛋白質磷酸化的表現。抗氧化劑N-acetyl-L-cysteine (NAC)可以避免汞所導致的胰島素分泌抑制和AKT磷酸化的表現,但不能降低PI3K活性增加的情形。利用PI3K的抑制劑LY294002或是經由表現dominant-negative p85 or Akt蛋白質體(plasmid)可預防汞化合物所導致的胰島素分泌抑制,但卻不能降低汞促進ROS的產生。實驗結果顯示,細胞實驗中,在汞化合物的刺激下,PI3K以及ROS都會獨自去調控AKT的磷酸化,進而影響胰島素分泌抑制的情形。動物實驗的結果顯示,小鼠經由口服餵食2至4週低劑量的汞化合物,發現其存在於血漿中的胰島素明顯有降低的現象,並且血糖提高和增加血漿中脂質過氧化作用。將餵食汞一定時間的小鼠胰島細胞分離出來,發現AKT磷酸化表現增加,而在合併處理NAC的小鼠,其胰島細胞無AKT磷酸化表現增加的情形。而小鼠在停止餵食汞之後,汞在小鼠體內所誘發的效應和增加高血糖的現象都可被回復。以上實驗結果顯示,低劑量的汞化合物會誘導氧化性壓力的產生,並且活化PI3K-AKT的路徑而引發胰臟胰島細胞的功能性損傷。 第二部份: 汞已知為重要的毒性物質,並且會誘導氧化性傷害的產生。由之前的文獻中顯示胰臟的胰島細胞對於氧化性傷害非常的敏感,然而汞在胰臟的胰島細胞所產生病理效應並不清楚。我們希望藉此研究探討有機汞化合物--甲基汞(methylmercury, MeHg)在引發氧化性傷害之後對於胰臟的胰島細胞的存活率及功能上的影響。 結果發現汞化合物會導致胰臟胰島細胞的死亡而導致其分泌胰島素的功能喪失。甲基汞(1-20uM)處理胰臟胰島細胞細胞株HIT-T15 24 小時,細胞存活率呈現劑量效應的減少,而ROS也有劑量效應與時間效應增加的現象。甲基汞 (2及5uM)處理24小時發現在HIT-T15細胞株和由小鼠胰臟分離出的胰島細胞都會有胰島素分泌能力降低的情形,此外,甲基汞會促進細胞的sub-G1以及annexin-V結合力的增加,這表示甲基汞會促進細胞凋亡的發生。HIT-T15 細胞株處理甲基汞後也發現其粒腺體膜電位(mitochondrial transmembrane potential)會有降低的現象,而粒腺體遭到破壞後會釋放出cytochrome c至細胞質中,進一步活化caspase-3。而上述結果均可被自由基拮抗劑N-acetylcysteine有效反轉。 我們認為甲基汞主要是透過促使胰臟胰島細胞細胞凋亡而使其分泌胰島素的能力喪失。 第三部份: 汞已知為重要的毒性物質,並且會誘導氧化姓傷害的產生。由之前的文獻中顯示胰臟的胰島細胞對於氧化性傷害非常的敏感,然而汞在胰臟的胰島細胞所產生病理效應並不清楚。我們希望藉此研究探討無機汞化合物--氯化汞(mercuric chloride, HgCl2)在引發氧化性傷害之後對於胰臟的胰島細胞的存活率及功能上的影響。 結果發現汞化合物會導致胰臟胰島細胞的死亡而導致其分泌胰島素的功能喪失。氯化汞(2-20uM)處理胰臟胰島細胞細胞株HIT-T15 24 小時,細胞存活率呈現劑量效應的減少,而ROS也有劑量效應與時間效應增加的現象。氯化汞處理24小時發現在HIT-T15細胞株和由小鼠胰臟分離出的胰島細胞都會有胰島素分泌能力降低的情形,此外,氯化汞會促進細胞的sub-G1以及annexin-V結合力的增加,並且降低粒腺體膜電位,繼而使cytochrome c釋放到細胞質中。所以氯化汞會促進細胞凋亡的發生。HIT-T15 細胞株處理氯化汞後也會增加AO (acridine orange)和EtBr (ethidium bromide) 的雙向染色和降低ATP濃度,而使細胞壞死。餵食小鼠氯化汞5 mg/kg明顯的導致血漿中胰島素減少,增加血糖和血漿中脂質過氧化作用,全血中也偵測到有大量汞的堆積現象。 我們認為氯化汞主要是透過促使胰臟胰島細胞細胞凋亡(apoptosis)和細胞壞死(necrosis)而使其分泌胰島素的能力喪失。 第四部份: 本篇主要是要研究利用甲醇萃取的濱當歸萃取物(Angelica hirsutiflora)是否有降低血糖的作用,藉以研發抗糖尿病的藥物。 實驗結果發現濱當歸萃取物能在在胰島細胞衍生出的HIT-T15細胞株和由小鼠胰臟分離出的胰島細胞(islet cells)中刺激胰島素的釋放,並且發現,腹腔注射濱當歸萃取物在空腹12小時的正常小鼠,可以降低因餵食澱粉之後的血糖增加,並且可以增加在血漿中的胰島素濃度。而在高脂飲食誘導的糖尿病鼠中,也發現濱當歸萃取物可以改善糖尿病鼠的葡萄糖不耐受性和胰島素不耐受性。在HIT-T15細胞和人類初代培養的胰島細胞都發現濱當歸萃取物會促進細胞內鈣離子的增加。此外在HIT-T15細胞也發現濱當歸萃取物會增加AKT和ERK1/2(extracellular signal-regulated protein kinases)的磷酸化作用,並且也發現濱當歸萃取物和胰島素在骨骼肌細胞衍生出的C2C12細胞株都可以促進葡萄糖的利用。我們也進一步發現分離自濱當歸萃取物的幾種純化物中具有促進HIT-T15胰島素的分泌的作用。 根據以上的實驗結果,我們推測濱當歸可以促進胰島素的分泌並且具有類似胰島素作用的效應,而降低在糖尿病動物體內的高血糖情形。 | zh_TW |
dc.description.abstract | Part1:
The relationship between oxidation stress and phosphoinositide 3-kinase (PI3K) signaling in pancreatic beta-cell dysfunction remains unclear. Mercury is a well-known toxic metal that induces oxidative stress. Submicromolar-concentration HgCl2 or methylmercury triggered reactive oxygen species (ROS) production and decreased insulin secretion in beta-cell–derived HIT-T15 cells and isolated mouse islets. Mercury increased PI3K activity and its downstream effector Akt phosphorylation. Antioxidant N-acetyl-L-cysteine (NAC) prevented mercury-induced insulin secretion inhibition and Akt phosphorylation but not increased PI3K activity. Inhibition of PI3K/Akt activity with PI3K inhibitor or by expressing the dominant-negative p85 or Akt prevented mercury-induced insulin secretion inhibition but not ROS production. These results indicate that both PI3K and ROS independently regulated Akt signaling–related, mercury-induced insulin secretion inhibition. We next observed that 2- or 4-week oral exposure to low-dose mercury to mice significantly caused the decrease in plasma insulin and displayed the elevation of blood glucose and plasma lipid peroxidation and glucose intolerance. Akt phosphorylation was shown in islets isolated from mercury-exposed mice. NAC effectively antagonized mercury-induced responses. Mercury-induced in vivo effects and increased blood mercury were reversed after mercury exposure was terminated. These results demonstrate that low-dose mercury–induced oxidative stress and PI3K activation cause Akt signaling–related pancreatic beta-cell dysfunction. Part2: Mercury is a well-known toxic metal, which induces oxidative stress. Pancreatic beta-cells are vulnerable to oxidative stress. The pathophysiological effect of mercury on the function of pancreatic beta-cells remains unclear. The present study was designed to investigate the effects of methylmercury (MeHg)-induced oxidative stress on the cell viability and function of pancreatic beta -cells. The number of viable cells was reduced 24 h after MeHg treatment in a dose-dependent manner with a range from 1 to 20 uM. 2',7'-Dichlorofluorescein fluorescence as an indicator of reactive oxygen species (ROS) formation after exposure of HIT-T15 cells or isolated mouse pancreatic islets to MeHg significantly increased ROS levels. MeHg could also suppress insulin secretion in HIT-T15 cells and isolated mouse pancreatic islets. After 24 h of exposure to MeHg, HIT-T15 cells had a significant increase in mercury levels with a dose-dependent manner. Moreover, MeHg displayed several features of cell apoptosis including an increase of the sub-G1 population and annexin-V binding. Treatment of HIT-T15 cells with MeHg resulted in disruption of the mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytosol and activation of caspase-3. Antioxidant N-acetylcysteine effectively reversed the MeHg-induced cellular responses. Altogether, our data clearly indicate that MeHg-induced oxidative stress causes pancreatic beta -cell apoptosis and dysfunction. Part3: Mercury is a well-known toxic metal, which induces oxidative stress. Pancreatic beta-cells are vulnerable to oxidative stress. The pathophysiological effect of inorganic mercury on the function of pancreatic beta-cells remains unclear. The present study was designed to investigate the effects of mercuric chloride (HgCl2)-induced oxidative stress on the cell viability and function of pancreatic beta -cells. The number of viable cells was reduced 24 h after HgCl2 treatment in a dose-dependent manner with a range from 2 to 20 uM. 2’,7’- Dichlorofluorescein fluorescence as an indicator of reactive oxygen species (ROS) formation after exposure of HIT-T15 cells or isolated mouse pancreatic islets to HgCl2 significantly increased ROS levels. HgCl2 could also suppress insulin secretion in HIT-T15 cells and isolated mouse pancreatic islets. After 24 h of exposure to HgCl2, HIT-T15 cells had a significant increase in mercury levels with a dose-dependent manner. Moreover, HgCl2 displayed several features of cell apoptosis including an increase of the sub- G1 population and annexin-V binding. Treatment of HIT-T15 cells with HgCl2 resulted in disruption of the mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytosol. Antioxidant N-acetylcysteine effectively reversed the HgCl2-induced cellular responses. Besides, HgCl2 displayed several features of cell necrosis including an increase of the AO (acridine orange) and EtBr (ethidium bromide) dual-staining and decrease ATP levels. We next observed that 2- or 4-week oral exposure to HgCl2 5 mg/kg to mice significantly caused the decrease in plasma insulin and displayed the elevation of blood glucose and plasma lipid peroxidation and whole blood mercury accumulation. Altogether, our data clearly indicate that HgCl2-induced oxidative stress causes pancreatic beta-cell apoptosis, necrosis and dysfunction. Part4: The methanolic extract of Angelica hirsutiflora was studied for its hypoglycemic activity. A. hirsutiflora extract potently stimulated the release of insulin from cultured pancreatic beta-cells (HIT-T15 cells) and isolated mouse and human islets. When A. hirsutiflora extract was peritoneally administrated to the fasted mice, it decreased the increase in blood glucose level after starch loading. The plasma insulin level was also increased by A. hirsutiflora extract treatment. In high fat diet-induced diabetic mice, A. hirsutiflora extract markedly improved the oral glucose intolerance as compared with the vehicle control. A. hirsutiflora extract could also effectively improve the insulin intolerance in high fat diet-induced diabetic mice. Besides, the A. hirsutiflora extract enhances calcium concentration in HIT-T15 cells and primary human islet cells. Moreover, both insulin and A. hirsutiflora extract were capable of increasing the phosphorylation of Akt and extracellular signal-regulated protein kinases (ERK) 1/2 proteins in HIT-T15 beta-cells. Both insulin and A. hirsutiflora extract could also increase the glucose consumption in differentiated C2C12 skeletal muscle cells. We had further found that pure compounds of A.hirsutiflora, including of Isopimpinellin, Bergapten, Byakanglicin, and Isobyakangelicin, were capable of increasing insulin secretion in HIT-T15 cells. These results suggest that the A. hirsutiflora may exert both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:17:57Z (GMT). No. of bitstreams: 1 ntu-96-D91447001-1.pdf: 2437219 bytes, checksum: 54777cfae52958f5411747ca5354d6d3 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 縮寫 4
Chapter 1: The Role of Phosphoinositide 3-Kinase/Akt Signaling in Low-Dose Mercury–Induced Mouse Pancreatic β-Cell Dysfunction in Vitro and In Vivo 中文摘要 6 Abstract 7-8 List of figures 9 Introduction 10-12 Materials and Methods 13-19 Results 20-24 Discussion 25-31 References 32-36 Figures and Figure legends 37-49 Chapter 2: Methylmercury Induces Pancreatic β-Cell Apoptosis and Dysfunction 中文摘要 51 Abstract 52 List of figures 53 Introduction 54-55 Materials and Methods 56-61 Results 62-64 Discussion 65-68 References 69-72 Figures and Figure legends 73-80 Chapter 3: Mercury Chloride Induces Pancreatic β-cell Dysfunction Involved Apoptosis and Necrosis 中文摘要 82 Abstract 83-84 List of figures 85 Introduction 86-88 Materials and Methods 89-95 Results 96-99 Discussion 100-104 References 105-106 Figures and Figure legends 107-115 Chapter 4: Extract From Angelica Hirsutiflora with Hypoglycemic Activity 中文摘要 117 Abstract 118-119 List of figures 120-121 Introduction 122-123 Materials and Methods 124-129 Results 130-134 Discussion 135-138 References 139-140 Figures and Figure legends 141-151 Publication 152 | |
dc.language.iso | en | |
dc.title | 糖尿病形成之環境毒素--汞之研究及濱當歸萃取物對血糖調節作用之探討 | zh_TW |
dc.title | Investigations of an environmental toxicant of diabetes induction, mercury, and angelica hirsutiflora extract with anti-diabetes activity | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡克嵩(Keh Sung Tsai),楊榮森(Rong Sen Yang),蕭水銀(Shoei Yn Lin-Shiau),林婉婉(Wan-Wan Lin) | |
dc.subject.keyword | 糖尿病,汞,濱當歸, | zh_TW |
dc.subject.keyword | diabetes,mercury,angelica hirsutiflora, | en |
dc.relation.page | 152 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-01-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。