請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25540完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭水銀 | |
| dc.contributor.author | Po-Wen Cheng | en |
| dc.contributor.author | 鄭博文 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:17:52Z | - |
| dc.date.copyright | 2007-02-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-23 | |
| dc.identifier.citation | Agrup, C., Bagger-Sjoback, D., Fryckstedt, J. (1999). Presence of plasma membrane-bound Ca2+-ATPase in the secretory epithelia of the inner ear. Acta Otolaryngol. 119, 437-445.
Assad, J. A., Shepherd, G. M., Corey, D. P. (1991). Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7, 985-994. Baloh, R. W., Jenkins, H. A., Honrubia, V., Yee, R. D., Lau, C. G. (1979). Visual-vestibular interaction and cerebellar atrophy. Neurology 29, 116-119. Barmack, N. H., (1981). A comparison of the horizontal and vertical vestibulo-ocular reflexes of the rabbit. J. Physiol. 314, 547-564. Barron, S. E., Daigneault, E. A. (1987). Effect of cisplatin on hair cell morphology and lateral wall Na, K-ATPase activity. Hear. Res. 26, 131-137. Berry, J. M., Jacobs, C., Sikic, B., Jalsey, J., Borch, R. F. (1990). Modification of cisplatin toxicity with diethyldithiocarbamate. J. Clin. Oncol. 8, 1585-1590. Black, F. O., Myers, E. N., Schramm, V. L., Johnson, J., Sigler, B., Thearle, P. B., Burns, D. S. (1982). Cisplatin vestibular ototoxicity: preliminary report. Laryngoscope 92, 1363-1368. Blumenreich, M. S., Woodcock, T. M., Jones, M., Richman, S. P., Gentile,P. S., Kubota, T. T., Allegra, J. C. (1985). High-dose cisplatin in patients with advanced malignancies. Cancer 55, 1118-1122. Borg, E., Canlon, B., Engstrom, B. (1995). Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions. Scand. Audiol. Suppl., 40, 1-147. Bosher, S. K. (1980). The effects of inhibition of the strial Na+, K+-activated ATPase by perilymphatic ouabain in the guinea pig. Acta Otolaryngol. 90, 219-229. Brady, H. R., Kone, B. C., Stromski, M. E., Zeidel, M. L., Giebisch, G., Gullans, S. R. (1990). Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules. Am. J. Physiol. 258, 1181-1187. Campbell, K. C., Rybak, L. P., Meech, R. P., Hughes, L. (1996). D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear. Res. 102, 90-98. Campbell, K. C., Meech, R. P., Rybak, L. P., Hughes, L. F. (1999). D-Methionine protects against cisplatin damage to the stria vascularis. Hear. Res. 138, 13-28. Campbell, K. C., Meech, R. P., Rybak, L. P., Hughes, L. F. (2003). The effect of D-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection. J. Am. Acad. Audiol. 14, 144-156. Canlon, B., Schacht, J. (1983). Acoustic stimulation alters deoxyglucose uptake in the mouse cochlea and inferior colliculus. Hear. Res., 10, 217-226. Cassandro, E., Sequino, L., Mondola, P., Attanasio, G., Barbara, M., Filipo, R. (2003). Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs--electrophysiological and biochemical study. Acta Otolaryngol., 123, 802-807. Chan, M. M., Fong, D., Soprano, K. J., Holmes, W. F., Heverling, H. (2003). Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J. Cell Physiol., 194: 63-70. Chen, Y. S., Tseng, F. Y., Liu, T. C., Lin-Shiau, S. Y., Hsu, C. J. (2005). Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs. Hear. Res., 203, 94-100. Chen, Z., Ulfendahl, M., Ruan, R., Tan, L., Duan, M. (2004). Protection of auditory function against noise trauma with local caroverine administration in guinea pigs. Hear. Res., 197, 131-136. Cheng, P. W., Kaga, K., Koyama, S., Kondo, K. (2001). Temporal bone histopathology after treatment by a large amount of cisplatin: a case study. Otolaryngol. Head Neck Surg. 125, 411-413. Cheng, P. W., Liu, S. H., Hsu, C. J., Lin-Shiau, S. Y. (2005). Correlation of increased activities of Na+, K+-ATPase and Ca2+-ATPase with the reversal of cisplatin ototoxicity induced by D-methionine in guinea pigs. Hear. Res. 205, 102-109. Cheng, P. W., Liu, S. H., Young, Y. H., Lin-Shiau, S. Y. (2006). d-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs. Toxicol. Appl. Pharmacol., 215, 228-236. Clerici, W. J., DiMartino, D. L., Prasad, M. R. (1995). Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear. Res. 84, 30-40. Clerici, W. J., Hensley, K., DiMartino, D. L., Butterfield, D. A. (1996). Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear. Res. 98, 116-124. Clerici, W. J., Yang, L. (1996). Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function. Hear. Res., 101, 14–22. Cross, H. J., Tilby, M., Chipman, J. K., Ferry, D. R., Gescher, A. (1996). Effect of quercetin on the genotoxic potential of cisplatin. Int. J. Cancer, 66: 404-408. Crow, J. P., Beckman, J. S. (1995). The role of peroxynitrite in nitric oxide mediated toxicity. Curr. Top. Microbiol. Immunol., 196, 53-73. Curtis, L. M., Garg, L. C., Rarey, K. E. (1997). Ca2+-ATPases in the cochlear duct. Acta Otolaryngol. 117, 553-558. De Lauretis, A., De Capua, B., Barbieri, M. T., Bellussi, L., Passali, D. (1999). ABR evaluation of ototoxicity in cancer patients receiving cisplatin or carboplatin. Scand. Audiol. 28,139-143. Dieterich, M., Brandt, T. (1995). Vestibulo-ocular reflex. Curr. Opin. Neurol. 8, 83-88. Duan, M. L., Ulfendahl, M., Laurell, G., Counter, A. S., Pyykko, I., Borg, E., et al. (2002). Protection and treatment of sensorineural hearing disorders caused by exogenous factors: experimental findings and potential clinical application. Hear. Res., 169, 169-178. Eastman, A. (1986). Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 25, 3912-3915. Ekborn, A., Laurell, G., Johnstrom, P., Wallin, I., Eksborg, S., Ehrsson, H. (2002). D-Methionine and cisplatin ototoxicity in the guinea pig: D-methionine influences cisplatin pharmacokinetics. Hear. Res. 165, 53-61. Flock, A., Flock, B., Ulfendahl, M. (1986). Mechanisms of movement in outer hair cells and a possible structural basis. Arch. Otorhinolaryngol. 243, 83–90. Forastiere, A. A., Takasugi, B. J., Baker, S. R., Wolf, G. T. and Kudla-Hatch, V. (1987) High-dose cisplatin in advanced head and neck cancer. Cancer Chemother. Pharmacol. 19, 155-158. Francescato, H. D., Coimbra, T. M., Costa, R. S., Bianchi Mde, L. (2004). Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. Kidney Blood Press Res. 27, 148-158. Friedman, M. (1999). Chemistry, nutrition, and microbiology of d-amino acids. J. Agric. Food Chem., 347, 3457-3459. Gratton, M. A., Smyth, B. J., Lam, C. F., Boettcher, F. A., Schmiedt, R. A. (1997). Decline in the endocochlear potential corresponds to decreased Na, K-ATPase activity in the lateral wall of quiet-aged gerbils. Hear. Res. 108, 9-16. Guo, Y., Wu, Y., Chen, W., Lin, J. (1994). Endotoxic damage to the stria vascularis: the pathogenesis of sensorineural hearing loss secondary to otitis media. J. Laryngol. Otol. 108, 310-313. Hamernik, R. P., Turrentine, G., Roberto, M., Salvi, R., Henderson, D. (1984). Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear. Res., 13, 229-247. Hartwig, S., Pettersson, U., Stahle, J. (1983). cis-Diamminedichloroplatinum: a cytostatic with an ototoxic effect. ORL J. Otorhinolaryngol. Relat. Spec. 45, 257-261. Hawkins, J. E., Jr. (1971). The role of vasoconstriction in noise-induced hearing loss. Ann. Otol. Rhinol. Laryngol., 80, 903-913. Henriksson, N. G. (1956). Speed of slow component and duration in caloric nystagmus. Acta Otolaryngol. Suppl. 125, 1–29. Hinojosa, R., Riggs, L. C., Strauss, M., Matz, G. J. (1995). Temporal bone histopathology of cisplatin ototoxicity. Am. J. Otol. 16, 731-740. Hofmann, J., Doppler, W., Jakob, A., Maly, K., Posch, L., Uberall, F., Grunicke, H. H. (1988). Enhancement of the antiproliferative effect of cis-diamminedichloroplatinum(II) and nitrogen mustard by inhibitors of protein kinase C. Int. J. Cancer 42, 382-388. Hofmann, J., Fiebig, H. H., Winterhalter, B. R., Berger, D. P., Grunicke, H. (1990). Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int. J. Cancer 45, 536-539. Hoistad, D. L., Ondrey, F. G., Mutlu, C., Schachern, P. A., Paparella, M. M., Adams, G. L. (1998). Histopathology of human temporal bone after cis-platinum, radiation, or both. Otolaryngol. Head Neck Surg. 118, 825-832. Hsu, C. J., Chen, Y. S., Shau, W. Y., Yeh, T. H., Lee, S. Y., Lin-Shiau, S. Y. (2002). Impact of activities of Na(+)-K(+)-ATPase and Ca2(+)-ATPase in the cochlear lateral wall on recovery from noise-induced temporary threshold shift. Ann. Otol. Rhinol. Laryngol., 111, 842-849. Hsu, C. J., Shau, W. Y., Chen, Y. S., Liu, T. C., Lin-Shiau, S. Y. (2000). Activities of Na(+),K(+)-ATPase and Ca(2+)-ATPase in cochlear lateral wall after acoustic trauma. Hear. Res., 142, 203-211. Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., Conney, A. H. (1994). Inhibitory effects of dietary curcumin on forestomach, duodenal and colon carcinogenesis in mice. Cancer Res. 54, 5841-5847. Huang, M. T., Newmark, H. L., Frenkel, K. (1997). Inhibitory effects of curcumin on tumorigenesis in mice. J. Cell Biochem. Suppl. 27, 26-34. Huang, M. T., Smart, R. C., Wong, C. Q., Conney, A. H. (1988). Inhibitory effect of curcumin, chlorogenic acid, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946. Hudspeth, A. J. (1985). The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752. Ichimiya, I., Adams, J. C., Kimura, R. S. (1994). Immunolocalization of Na+, K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol. 114, 167-176. Ito, M. (1993). Neurophysiology of the nodulofloccular system. Rev. Neurol. (Paris) 149, 692-697. Iwano, T., Yamamoto, A., Omori, K., Akayama, M., Kumazawa, T., Tashiro, Y. (1989). Quantitative immunocytochemical localization of Na+, K+-ATPase α-subunit in the lateral wall of rat cochlear duct. J. Histochem. Cytochem. 37, 353-363. Jones, M. M., Basinger, M. A. (1989). Thiol and thioether suppression of cis-platinum-induced nephrotoxicity in rats bearing the Walker 256 carcinosarcoma. Anticancer Res. 9, 1937-1941. Kavanagh, K. T., Babin, R. W. (1986). Definitions and types of nystagmus and calculations. Ear. Hear. 7, 157-166. Kelloff, G. J., Boone, C. W., Crowell, J. A., Steele, V. E., Lubet, R., Sigman, C. C. (1994). Chemopreventive drug development: perspectives and progress. Cancer Epidemiol. Biomarkers Prev. 3, 85-98. Kerr, T. P., Ross, M. D., Ernst, S. A. (1982). Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct: Significance for cochlear fluid balance. Am. J. Otolaryngol. 3, 332-338. Kinsell, L. W., Harper, H. A., Giese, G. K., Margen, S., McCallie D. P. H. JR. (1949). Studies in methionine metabolism. II: fasting plasma methionine levels in normal and hepatopathic individuals in response to daily methionine ingestion. J. Clin. Invest., 28, 1439-1450. Kitsigianis, G. A., O'Leary, D. P., Davis, L. L. (1988a). Vestibular autorotation testing of cisplatin chemotherapy patients. Adv. Otorhinolaryngol. 42, 250-253. Kitsigianis, G. A., O'Leary, D. P., Davis, L. L. (1988b). Active head-movement analysis of cisplatin-induced vestibulotoxicity. Otolaryngol. Head Neck Surg. 98, 82-87. Kobayashi, H., Ohashi, N., Watanabe, Y., Mizukoshi, K. (1987). Clinical features of cisplatin vestibulotoxicity and hearing loss. ORL J. Otorhinolaryngol. Relat. Spec. 49, 67-72. Kopke, R., Bielefeld, E., Liu, J., Zheng, J., Jackson, R., Henderson, D., Coleman, J. K. (2005). Prevention of impulse noise-induced hearing loss with antioxidants. Acta Otolaryngol., 125, 235-243. Kopke, R. D., Coleman, J. K., Liu, J., Campbell, K.C., Riffenburgh, R. H. (2002). Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope, 112, 1515-1532. Kopke, R. D., Liu, W., Gabaizadeh, R., Jacono, A., Feghali, J., Spray, D., Garcia, P., Steinman, H., Malgrange, B., Ruben, R. J., Rybak, L., Van de Water, T. R. (1997). Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am. J. Otol. 18, 559-571. Korkina, L. G., Afanas'ev, I. B. (1997). Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 38, 151-163. Korver, K. D., Rybak, L. P., Whitworth, C., Campbell, K. M. (2002). Round window application of D-methionine provides complete cisplatin otoprotection. Otolaryngol. Head Neck Surg. 126, 683-689. Kuhlmann, M. K., Horsch, E., Burkhardt, G., Wagner, M., Kohler, H. (1998). Reduction of cisplatin toxicity in cultured renal tubular cells by the bioflavonoid quercetin. Arch. Toxicol. 72, 536-540. Kunchandy, E., Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 58, 237–240. Lamson, D. W., Brignall, M. S. (2000). Antioxidants and cancer, part 3: quercetin. Altern. Med. Rev. 5, 196-208. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., Candia, O. A. (1979). An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95-97. Laurell G, Teixeira M, Sterkers O, Bagger-Sjoback D, Eksborg S, Lidman O, Ferrary E. (2002). Local administration of antioxidants to the inner ear. Kinetics and distribution (1). Hear. Res. 173, 198-209. Lee, J. E., Nakagawa, T., Kita, T., Kim, T. S., Iguchi, F., Endo, T., Shiga, A., Lee, S. H., Ito, J. (2004). Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis. ORL J. Otorhinolaryngol. Relat. Spec. 66, 111-118. Lehotsky, J., Kaplan, P., Racay, P., Matejovicova, M., Drgova, A., Mezesova, V. (1999). Membrane ion transport systems during oxidative stress in rodent brain: protective effect of stobadine and other antioxidants. Life Sci. 65, 1951-1958. Liberman, M. C., Dodds, L. W. (1987). Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear. Res., 26, 45-64. Lin, H. C., Kang, B. H., Wong, C. S., Mao, S. P., Wan, F. J. (1999). Systemic administration of D-amphetamine induced a delayed production of nitric oxide in the striatum of rats. Neurosci. Lett. 276, 141-144. Marquis, R. E., Hudspeth, A. J. (1997). Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Proc. Natl. Acad. Sci. 94, 11923-11928. Mees, K. (1983). Ultrastructural localization of K+-dependent, ouabain-sensitive NPPase (Na+, K+-ATPase) in the guinea pig inner ear. Acta Otolaryngol. 95, 277-289. Mehta, K., Pantazis, P., McQueen, T., Aggarwal, B. B. (1997). Antiproliferative effect of Curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470-481. Melnick, W. (1991). Human temporary threshold shift (TTS) and damage risk. Journal of the Acoustical Society of America, 90, 147-154. Muldoon, L. L., Pagel, M. A., Kroll, R. A., Brummett, R. E., Doolittle, N. D., Zuhowski, E. G, Egorin, M. J., Neuwelt, E. A. (2000). Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin. Cancer Res. 6, 309-315. Mulroy, M. J., Fromm, R. F., Curtis, S. (1990). Changes in the synaptic region of auditory hair cells during noise-induced temporary threshold shift. Hear. Res., 49, 79-87. Myers, S. F., Blakley, B. W., Schwan, S. (1993). Is cis-platinum vestibulotoxic ? Otolaryngol. Head Neck Surg. 108, 322-328. Nakai, Y., Masutani, H. (1988). Noise-induced vasconstriction in the cochlea. Acta Otolaryngol. Suppl., 447, 23-27. Nakano, S., Gemba, M. (1989). Potentiation of cisplatin-induced lipid peroxidation in kidney cortical slices by glutathione depletion. Jpn. J. Pharmacol. 50, 87-92. Nakayama, M. (1992). Cisplatin induced vestibular damage. Nippon Jibiinkoka Gakkai Kaiho 95, 81-94. Nakayama, M., Riggs, L. C., Matz, G. J. (1996). Quantitative study of vestibulotoxicity induced by gentamicin or cisplatin in the guinea pig. Laryngoscope 106, 162-167. Nario, K., Kitano, I., Mori, N., Matsunaga, T. (1998). Effect of endoplasmic Ca2+-ATPase inhibitors on cochlear potentials in the guinea-pig. Acta Otolaryngol. 118, 198-205. Navis, I., Premalatha, B. (1999). Dietary curcumin with cisplatin administration modulates tumour marker indices in experimental fibrosarcoma. Pharmacol. Res. 39, 175–179. Nechay, B. R., Neldon, S. L. (1984). Characteristics of inhibition of human renal adenosine triphosphatases by cisplatin and chloroplatinic acid. Cancer Treat. Rep. 68, 1135-1141. Nordmann, A. S., Bohne, B. A., Harding, G. W. (2000). Histopathological differences between temporary and permanent threshold shift. Hear. Res., 139, 13-30. Ohinata, Y., Miller, J. M., Altschuler, R. A., Schacht, J. (2000). Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res., 878, 163-173. Ohinata, Y., Miller, J. M., Schacht, J. (2003). Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res., 966, 265-273. Ohinata, Y., Yamasoba, T., Schacht, J., Miller, J. M. (2000). Glutathione limits noise-induced hearing loss. Hear. Res., 146, 28-34. Ohlemiller, K. K., Wright, J. S., Dugan, L. L. (1999). Early elevation of cochlear reactive oxygen species following noise exposure. Audiol. Neurootol., 4, 229-236. Ozols, R. F., Young, R. C. (1985). High-dose cisplatin therapy in ovarian cancer. Semin. Oncol. Suppl. 4, 21-30. Patuzzi, R. (1998). Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels. Hear. Res., 125, 17-38. Pettorossi, V. E., Bamonte, F., Errico, P., Ongini, E., Draicchio, F., Sabetta, F. (1986). Vestibulo-ocular reflex (VOR) in guinea pigs. Acta Otolaryngol. 101, 378-388. Pitovski, D. Z., Kerr, T. P. (2002). Sodium- and potassium-activated ATPase in the mammalian vestibular system. Hear. Res. 171, 51-65. Pourbakht, A. Yamasoba, T. (2003). Ebselen attenuates cochlear damage caused by acoustic trauma. Hear. Res., 181, 100-108. Pryor, W. A, Jin, X., Squadrito, G. L. (1994). One- and two-electron oxidations of methionine by peroxynitrite. Proc. Natl. Acad. Sci. U. S. A., 91, 11173-11177. Puel, J. L. (1995). Chemical synaptic transmission in the cochlea. Prog. Neurobiol., 47, 449-476. Ravi, R., Rybak, L. P., Somani, S. M. (1991). Relationship of pharmacodynamic effects of cisplatin to the glutathione levels in cochlea, inferior colliculus and kidney. Pharmacologist 33, 217. Ravi, R., Somani, S. M., Rybak, L. P. (1995). Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol. Toxicol. 76, 386-394. Reser, D., Rho, M., Dewan, D., Herbst, L., Li, G., Stupak, H., Zur, K., Romaine, J., Frenz, D., Goldbloom, L., Kopke, R., Arezzo, J., Van De Water, T. (1999). L- and D- methionine provide equivalent long term protection against CDDP-induced ototoxicity in vivo, with partial in vitro and in vivo retention of antineoplastic activity. Neurotoxicology 20, 731-748. Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear. Res., 9, 263-278. Rosenberg, B. (1985). Fundamental studies with cisplatin. Cancer 55, 2303-2315. Ruan, R. S., Leong, S. K., Yeoh, K. H. (1997). Ototoxicity of sodium nitroprusside. Hear. Res., 114, 169-178. Rybak, L. P., Ravi, R., Somani, S. M. (1995). Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam. Appl. Toxicol. 26, 293-300. Rybak, L. P., Husain, K., Evenson, L., Morris, C., Whitworth, C., Somani, S. M. (1997). Protection by 4-methylthiobenzoic acid against cisplatin-induced ototoxicity: antioxidant system. Pharmacol. Toxicol. 81, 173-179. Saunders, J. C., Dear, S. P., Schneider, M. E. (1985). The anatomical consequences of acoustic injury: A review and tutorial. J. Acoust. Soc. Am., 78, 833-860. Scambia, G., Ranelletti, F. O., Benedetti Panici, P., Piantelli, M., Bonanno, G., De Vincenzo, R., Ferrandina, G., Maggiano, N., Capelli, A., Mancuso, S. (1992). Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum (II). Gynecol. Oncol. 45, 13-19. Schaefer, S. D., Wright, C. G., Post, J. D., Frenkel, E. P. (1981). Cis-platinum vestibular toxicity. Cancer 47, 857-859. Schuknecht, H. F. (1993). Acoustic trauma. In: Schuknecht, H. F. (Ed). Pathology of the Ear, 2nd edn. Lea and Febiger, Philadelphia, PA, pp. 289-294. Schulte, B. A. (1993). Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear. Res. 65, 262-273. Schulte, B. A., Adams, J. C. (1989). Distribution of immunoreactive Na+, K+-ATPase in gerbil cochlea. J. Histochem. Cytochem. 37, 127-134. Schulte, B. A., Schmiedt, R. A. (1992). Lateral wall Na, K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear. Res. 61, 35-46. Schweitzer, V. G., Rarey, K. E., Dolan, D. F., Abrams, G. E., Sheridan, C. (1986). Vestibular morphological analysis of the effects of cisplatin vs. platinum analogs, CBDCA (JM-8) and CHIP (JM-9). Laryngoscope 96, 959-974. Schweitzer, V. G. (1993). Cisplatin-induced ototoxicity: The effect of pigmentation and inhibitory agents. Laryngoscope 103, 1-52. Seidman, M. D., Shivapuja, B. G., Quirk, W. S. (1993). The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg, 109, 1052-1056. Sergi, B., Ferraresi, A., Troiani, D., Paludetti, G., Fetoni, A. R. (2003). Cisplatin ototoxicity in the guinea pig: vestibular and cochlear damage. Hear. Res. 182, 56-64. Sergi, B., Fetoni, A. R., Ferraresi, A., Troiani, D., Azzena, G. B., Paludetti, G., Maurizi, M. (2004). The role of antioxidants in protection from ototoxic drugs. Acta Otolaryngol. Suppl. 552, 42-45. Sha, S. H., Schacht, J. (2000). Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant. Hear. Res., 142, 34-40. Sharpe, J. A., Goldberg, H. J., Lo, A. W., Herishanu, Y. O. (1981). Visual-vestibular interaction in multiple sclerosis. Neurology 31, 427-433. Shi, X., Nuttall, A. L. (2003). Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res., 967, 1-10. Shoji, F., Yamasoba, T., Magal, E., Dolan, D. F., Altschuler, R. A., Miller, J. M. (2000). Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea. Hear. Res., 142, 41-55. Sie, K. C., Norton, S. J. (1997). Changes in otoacoustic emissions and auditory brain stem response after cis-platinum exposure in gerbils. Otolaryngol. Head Neck Surg. 116, 585-592. Smith, M. A., Crawford, J. D. (1998). Neural control of rotational kinematics within realistic vestibuloocular coordinate systems. J. Neurophysiol. 80, 2295-2315. Soszynski, M., Filipiak, A., Bartosz, G., Gebicki, J. M. (1996). Effect of amino acid peroxides on the erythrocyte. Free Radical Biology & Medicine, 20, 45-51. Spoendlin, H. (1976). Anatomical changes following various noise exposures. In: Henderson, D., Hamernik, R. P., Dosanjh, D. S., and Mills, J. H. (Eds.), Effects of Noise on Hearing. Raven Press, New York, pp. 69-89. Stevens, D. M., Dutka, A. J., Synder, J. E. (1995). Vestibulo-ocular reflex gain as a measure of vestibular function in guinea pigs while in a recompression chamber: Apparatus design and effects of nitrogen narcosis. Am. J. Otol. 16, 360–364. Stewart, D. J., Verma, S., Maroun, J. A. (1987). Phase I study of the combination of disulfiram with cisplatin. Am. J. Clin. Oncol. 10, 517-519. Stopp, P. (1982). The effect of moderate-intensity noise on cochlear potentials and structure. In: Hamernik, R. P., Henderson, D., Salvi, R. (Eds.), New Perspectives on Noise-Induced Hearing Loss. Raven Press, New York, pp. 331-343. Stoter, G., Koopman, A., Vendrik, C. P., Struyvenberg, A., Sleyfer, D. T., Willemse, P. H., Schraffordt Koops, H., van Oasterom, A. T., ten Bokkel Huinink, W. W., Pinedo, H. M. (1989). Ten-year survival and late sequelae in testicular cancer patients treated with cisplatin, vinblastine and bleomycin. J. Clin. Oncol. 7, 1099-1104. Strauss, M., Towfighi, J., Lord, S., Lipton, A., Harvey, H. A., Brown, B. (1983). Cis-platinum ototoxicity: clinical experience and temporal bone histopathology. Laryngoscope 93, 1554-1559. Tay, L. K., Bregman, C. L., Masters, B. A., Williams, P. D. (1988). Effects of cis-diamminedichloroplatinum(II) on rabbit kidney in vivo and on rabbit renal proximal tubule cells in culture. Cancer Res. 48, 2538-2543. Thomas Dickey, D., Muldoon, L. L., Kraemer, D. F., Neuwelt, E. A. (2004). Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear. Res. 193, 25-30. Van Benthem, P. P. G., Klis, S. F. L., Albers, F. W. J., de Wildt, D. J., Veldman, J. E., Huizing, E. H., Smoorenburg, G. F. (1994). The effect of nimodipine on cochlear potentials and Na+/K+-ATPase activity in normal and hydropic cochleas of the albino guinea pig. Hear. Res. 77, 9-18. Vibert, N. D., Waele, C., Escudero, M., Vidal, P. P. (1993). The horizontal vestibulo-ocular reflex in the hemilabyrinthectomized guinea-pig. Exp.Brain Res. 97, 263–273. Wang, J., Dib, M., Lenoir, M., Vago, P., Eybalin, M., Hameg, A., Pujol, R., Puel, J. L. (2002). Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig. Neuroscience, 111, 635-648. Wangemann, P. (1995). Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear. Res. 90, 149-157. Wangemann, P. (2002). K+ cycling and the endocochlear potential. Hear. Res. 165, 1-9. Watanabe, K., Hess, A., Bloch, W., Michel, O. (2000). Expression of inducible nitric oxide synthase (iNOS/NOS II) in the vestibule of guinea pigs after the application of cisplatin. Anticancer Drugs 11, 29-32. Watanabe, K., Jinnouchi, K., Baba, S., Yagi, T. (2001 a). Induction of apoptotic pathway in the vestibule of cisplatin (CDDP)-treated guinea pigs. Anticancer Res. 21, 3929-3932. Watanabe, K., Jinnouchi, K., Yagi, T. (2001 b). Detection of single-stranded DNA (ssDNA) in the vestibule of guinea pigs after the application of cisplatinum (CDDP). Anticancer Res. 21, 1135-1138. Weatherly, R. A., Owens, J. J., Catlin, F. I., Mahoney, D. H. (1991). cis-platinum ototoxicity in children. Laryngoscope 101, 917-924. Wright, C. G., Schaefer, S. D. (1982). Inner ear histopathology in patients treated with cis-platinum. Laryngoscope 92, 1408-1413. Yamasoba, T., Schacht, J., Shoji, F., Miller, J. M. (1999). Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Res., 815, 317-325. Yoshihara, T., Igarashi, M. (1987). Cytochemical localization of Ca2+-ATPase activity in the lateral cochlear wall of the guinea pig. Arch. Otorhinolaryngol. 243, 395-400. Yoshihara, T., Usami, S., Igarashi, M., Fermin, C. D. (1987). Ultracytochemical study of ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase activity in the inner ear of the squirrel monkey. Acta Otolaryngol. 103, 161-169. Young, Y. H., Nomura, Y., Okuno, T., Hara, M. (1991). Clip electrode method for recording eye movements in experimental animals. Eur. Arch. Otorhinolaryngol. 248, 331-334. Young, Y. H., Chuu, J. J., Liu, S. H., Lin-Shiau, S.Y. (2002). Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibulo-ocular reflex system of guinea pigs. Toxicol. Sci. 67, 256-263. Zhang, M., Liu, W., Ding, D., Salvi, R. (2003). Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120, 191-205. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25540 | - |
| dc.description.abstract | 順-雙氨雙氯鉑(cisplatin)是眾多抗癌藥物的一種,為目前最有效而被廣泛使用化學治療藥之一,尤其對於頭頸部腫瘤、睪丸腫瘤、卵巢腫瘤、膀胱腫瘤與小細胞肺癌有明顯的療效,然而,順-雙氨雙氯鉑的副作用很大,主要的毒性包括耳毒性、腎毒性、神經毒性、骨髓抑制等。其中腎毒性因充水治療已可降低其毒性,然而耳毒性仍無法有效預防,因而降低化療使用劑量而干擾癌症治療效果。以往順-雙氨雙氯鉑對於耳毒性只偏向對於耳蝸的聽覺生理研究,對於其生化機轉及前庭平衡系統的毒性則少有研究。主因實驗動物被麻醉後,平衡系統被抑制而無法客觀量度,比如前庭眼反射系統,實驗動物必須是清醒的且能配合,以免干擾電位的記錄。相對於順-雙氨雙氯鉑對於耳蝸的毒性,可藉由麻醉實驗動物後,聽性腦幹反應的變化而得到客觀的量度。藉由本研究的方法,吾人可以檢視清醒實驗動物的前庭眼反射系統功能,同時比較順-雙氨雙氯鉑對天竺鼠平衡及聽覺系統之傷害程度,分析這些生理功能變化與內耳酵素活性及氧化性壓力變化之關係,以闡明產生耳毒性之生化機轉。我們期望尋求一種或數種化療保護劑,可以減少順-雙氨雙氯鉑化療的副作用,但又不影響其抗癌作用,進而可以提高順-雙氨雙氯鉑的劑量,因而提高化療的療效。有報告指出,化療保護劑D型甲硫胺酸(D-methionine)可以減少順-雙氨雙氯鉑造成的聽力喪失又不至於減少其抗癌療效,但是對於其生化機轉及是否有減少前庭系統的毒性則未有報告。本研究擬藉由檢測前庭眼反射系統的功能,我們期望可以回答預先處理D型甲硫胺酸後,是否可以減少化療對於前庭系統的毒性,同時比較順-雙氨雙氯鉑對於兩者毒性的差異,分析其生理功能變化與內耳酵素活性及氧化壓力變化之關係,以釐清D型甲硫胺酸減輕耳毒性之生化機轉。
噪音是導致聽力障礙最主要的原因之一。目前預防噪音傳入內耳造成傷害的方法是以佩帶耳塞、耳罩等防護設備、減少噪音的產生及暴露,然而在許多職業與娛樂場所如此預防措施仍嫌不足,噪音依然會產生聽力障礙,因此用藥物進一步來預防噪音性聽力障礙相當重要。以往的研究已證實氧化性壓力的增加,在噪音性聽力障礙扮演著重要角色,然而有關噪音破壞耳蝸生理功能以及抗氧化劑可降低此傷害之生化機轉則罕被提出報告。因此本研究檢驗D型甲硫胺酸在減少噪音的耳蝸傷害,其聽力閾值的改變是否與鈉鉀-腺三磷酸酵素及鈣-腺三磷酸酵素活性與氧化性壓力的改變具有相關性。這些實驗結果可提出D型甲硫胺酸在預防天竺鼠噪音性聽力障礙之生化機轉,以及探討D型甲硫胺酸未來其在臨床上用來預防噪音性聽力障礙的潛力。 壹、D型甲硫胺酸逆轉天竺鼠順-雙氨雙氯鉑耳蝸毒性與增加耳蝸外側壁鈉鉀-腺三磷酸酵素及鈣-腺三磷酸酵素活性之相關性以及薑黃素與檞皮酮減緩順-雙氨雙氯鉑耳蝸毒性之角色 本研究測試天竺鼠在接受順-雙氨雙氯鉑7天後,耳蝸外側壁與腦幹之鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素活性之改變,與聽性腦幹反應的改變是否具相關性。此外,化療保護劑D型甲硫胺酸、薑黃素或檞皮酮是否可逆轉順-雙氨雙氯鉑所引發聽性腦幹反應閾值之增加與內耳耳蝸腺三磷酸酵素活性之減少。實驗動物為天竺鼠,分為實驗組及對照組,均以腹腔注射給予順-雙氨雙氯鉑連續七天,實驗組在給予順-雙氨雙氯鉑前三十分鐘給予化療保護劑D型甲硫胺酸、薑黃素或檞皮酮,對照組則給予生理食鹽水。測量給藥後天竺鼠之聽性腦幹反應。之後將實驗動物犧牲,分離出腦幹及內耳耳蝸外側壁,分別測量其鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素酵素活性。結果發現順-雙氨雙氯鉑不僅造成天竺鼠聽性腦幹反應閾值之增加,同時改變其絕對波潛時及波與波之間的潛時,但無改變III-V波之間的潛時,而且順-雙氨雙氯鉑有意義地減少耳蝸外側壁鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素的活性,但無改變腦幹鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素的活性。化療保護劑D型甲硫胺酸、薑黃素與檞皮酮的確逆轉了順-雙氨雙氯鉑所造成聽性腦幹反應及腺三磷酸酵素活性之異常。總結順-雙氨雙氯鉑並無改變III-V波的潛時與腦幹腺三磷酸酵素的活性,佐證了順-雙氨雙氯鉑無法通過血腦屏障。本研究顯示順-雙氨雙氯鉑所引發之耳蝸毒性部分歸因於耳蝸內生化的損害與離子的失衡,而這些傷害可被D型甲硫胺酸、薑黃素或檞皮酮所逆轉。 貳、經由改變前庭腺三磷酸酵素的活性與氧化壓力D型甲硫胺酸可減緩天竺鼠順-雙氨雙氯鉑前庭毒性 數十年來,化療藥物順-雙氨雙氯鉑已被用來治療許多癌症。雖然過去曾報導過它可能造成前庭眼反射系統的破壞,然而對其生化機轉仍不十分了解。本研究探討順-雙氨雙氯鉑是否造成天竺鼠前庭毒性及化療保護劑D型甲硫胺酸是否可逆轉此毒性。此外D型甲硫胺酸的保護作用與前庭腺三磷酸酵素活性與氧化壓力的改變是否具相關性。實驗動物為天竺鼠,分為實驗組及對照組,均以腹腔注射給予順-雙氨雙氯鉑連續七天,實驗組在給予順-雙氨雙氯鉑前三十分鐘給予化療保護劑D型甲硫胺酸,對照組則給予生理食鹽水。藉由眼振電圖,紀錄給藥七天後天竺鼠溫差測驗的結果。之後將實驗動物犧牲,分離出內耳前庭壺腹及小腦皮質組織,分別測量其鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素酵素活性、脂質過氧化及一氧化氮的濃度。藉由溫差測驗眼振慢速相速度的變化得知順-雙氨雙氯鉑確可破壞天竺鼠的前庭功能,而且有意義地減少前庭壺腹鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素的活性,但無改變小腦皮質鈉鉀-腺三磷酸酵素與鈣-腺三磷酸酵素的活性。D型甲硫胺酸的確逆轉了順-雙氨雙氯鉑所造成眼振慢速相速度變慢及前庭壺腹腺三磷酸酵素活性之異常。此外,順-雙氨雙氯鉑可造成前庭壺腹溫差測驗的增加,而這些變化可被D型甲硫胺酸所抑制。順-雙氨雙氯鉑可抑制天竺鼠內耳前庭壺腹腺三磷酸酵素的活性,增加其氧化壓力。順-雙氨雙氯鉑所引發之前庭毒性至少部分歸因於前庭內生化的損害與離子的失衡,而D型甲硫胺酸藉由其抗氧化的特性,可減輕順-雙氨雙氯鉑所造成的前庭毒性。 參、 D型甲硫胺酸可減緩噪音所引發之暫時聽閾值變動與腺三磷酸酵素相關 雖然噪音引發聽力障礙之機制至今仍未完全明瞭,活性氧化物已被證實在噪音性聽力障礙扮演一重要角色。儘管在動物實驗中,抗氧化劑可降低噪音性聽力障礙之發生,然而其機制鲜少被研究。還原性麩胱氨酸是存在於人類真核細胞中主要的抗氧化物之一,且有明確證據顯示麩胱氨酸可減少耳蝸因毒性或噪音因氧化性壓力增加所產生之傷害。在抗氧化物之中,D型甲硫胺酸是一種已經美國食品藥物管理局認可的含硫氨基酸,可用於臨床上使用。相較於其他多數可清除自由基的藥物,D型甲硫胺酸除了可以直接清除活性氧化物之外,亦可增加細胞內麩胱氨酸的濃度。活性氧化物會破壞細胞膜的構造及功能,包括酵素活性、離子通道、通透性、滲透性、接受器等。鈉鉀-腺三磷酸酵素及鈣-腺三磷酸酵素在維持內耳細胞離子的恆定與生理功能扮演著重要角色。我們先前的研究已經指出天竺鼠在經過噪音暴露後耳蝸外側壁此兩種酵素的活性顯著減少,且內生性一氧化氮的濃度顯著增加。基於這些事實,本研究進一步測試D型甲硫胺酸是否可減緩噪音所引發之暫時聽閾值變動,且此保護作用是否與耳蝸外側壁腺三磷酸酵素與氧化壓力的改變有關。本研究之實驗動物為天竺鼠,暴露於105±2分貝聲音音壓階的噪音持續10分鐘,暴露前1小時在其腹腔內分別注入D型甲硫胺酸(300 毫克/公斤)或生理食鹽水。聽性腦幹反應則分別在噪音暴露前、暴露後、暴露後1天、暴露後2天、或暴露後7天施行。之後分別將其犧牲,分離出內耳耳蝸外側壁,測量其鈉鉀-腺三磷酸酵素、鈣-腺三磷酸酵素活性,以及脂質過氧化物與一氧化氮的濃度。實驗結果顯示D型甲硫胺酸藉由其抗氧化的特性,可有效地減少噪音所引發之暫時聽閾值變動及加速聽性腦幹閾值的回復正常值,同時,減緩噪音所引發耳蝸外側壁腺三磷酸酵素的減少與氧化壓力的增加。 本研究證實順-雙氨雙氯鉑與噪音皆會抑制耳蝸外側壁鈉鉀-腺三磷酸酵素及鈣-腺三磷酸酵素的活性,同時順-雙氨雙氯鉑也會抑制前庭壺腹此酵素之活性,進而破壞耳蝸與前庭內細胞離子的恆定與生理功能。因此,耳蝸毒性與前庭毒性的產生可能與腺三磷酸酵素活性的減少有關。順-雙氨雙氯鉑與噪音皆會造成耳蝸外側壁與(或)前庭壺腹之氧化性壓力增加,如此可能和腺三磷酸酵素活性的減少有關,進一步影響聽覺與平衡系統的生理功能。D型甲硫胺酸不但可減輕順-雙氨雙氯鉑的耳蝸毒性、前庭毒性,亦可減少噪音引發的耳蝸傷害。因此,未來在臨床研究發展上,D型甲硫胺酸有潛力用來降低順-雙氨雙氯鉑的耳毒性,包括耳蝸毒性、前庭毒性,以提高其化療使用劑量而增加癌症治療效果;降低噪音所造成的耳蝸生化傷害,以預防噪音性聽力障礙。 | zh_TW |
| dc.description.abstract | Cisplatin (cis-diamminedichloroplatinum II), which is an alkylating agent and exerts cytotoxic effects through the formation of covalent DNA-adducts, is one of the most potent chemotherapeutic antitumor agents. Cisplatin has been demonstrated against a variety of neoplasms, particularly for head and neck, testicular, ovarian, bladder and small cell lung cancers. The major toxic effects of cisplatin include ototoxicity, nephrotoxicity and peripheral neuropathy. Although its nephrotoxicity can be decreased in severity through systemic hydration, ototoxicity is the dose-limiting side effect. In the past, studies concerning cisplatin ototoxicity were mainly limited to cochleotoxicity, based on the change of auditory function, instead of vestibulotoxicity. Vestibular function test is very difficult to perform in experimental animals because they have to be retrained in a special holder and keep awake. By means of vestibulo-ocular reflex testing system together with auditory brainstem response, we could sequentially compare the different responses between vestibular and cochlear toxicity induced by cisplatin in guinea pigs. In addition, our study will investigate the biochemical mechanisms leading to cisplatin-induced cochleotoxicity and vestibulotoxicity, which are rarely reported in the literatures.
Chemoprotection refers to protection from the side effects of chemotherapeutic agents without reducing their oncological efficacy. Most of chemoprotective agents, such as D-methionine, sodium thiosulfate, or N-acetyl-cysteine, are thiols (sulfur-containing compounds), electrophilic and thought to act as free radical scavengers or by covalent binding, or both. Because ototoxicity is still the dose-limiting side effect for cisplatin, administration of chemoprotective agents in the rescue from ototoxicity to increase the dose of cisplatin is necessary to improve its oncological effect and therapeutic efficacy. Previous studies indicated that chemoprotective agents could protect against cisplatin-induced hearing loss. However, it has never been reported whether these agents will also protect from cisplatin-induced vestibulotoxicity. To our best knowledge, this is the first study to evaluate if D-methionine might also protect from cisplatin-induced vestibulotoxicity in addition to its cochleotoxicity and their underlying biochemical mechanisms. Noise is the greatest causative factor among the defined etiologies of hearing loss. Exposure to loud noise may cause sensorineural hearing loss temporarily for minutes, hours or days, or permanently, depending on the intensity and duration of the noise exposure and the animal’s susceptibility to noise exposure. Noise-induced temporary threshold shift (TTS) is a reversible elevation in hearing threshold that may occur following acoustic overstimulation. The remaining hearing loss after the exposure that does not fully recover to its preexposure level is known as permanent threshold shift (PTS). Conventionally, prevention of noise-induced hearing loss (NIHL) has been addressed by providing wearable hearing protection and reducing noise emissions. However, for personnel in certain military and industrial occupations, this has been insufficient, especially when noise levels exceed 130 decibels (dB). The efficacy of hearing-protection devices and hearing-protection measures could be augmented by pharmacological agents that might reduce NIHL more effectively. A common result after acoustic injury is the development of a TTS. With multiple, cumulative exposure events, significant irreversible hearing loss can occur that produces a PTS. Therefore, pharmacological agents that prevent TTS may be effective against PTS and have a potential clinical role in the prophylaxis of noise-induced hearing loss in the future. Reactive oxygen species (ROS) have been shown to play a toxic role in the cochlea. Direct effects of ROS on cochlear outer hair cell shape in vitro, on cochlear explants and on cochlear function in vivo have been identified. ROS have recently been demonstrated to play an important role in NIHL. The role of antioxidants in protecting noise-induced cochlear injury has been widely studied in recent years. Our previous studies documented that reversible inactivation of enzyme activities (Na+, K+-ATPase and Ca2+-ATPase) and increased production of endogenous NO in the cochlear lateral wall might play a role in the pathogenesis of noise-induced TTS. D-methionine, functioning as a ROS and /or RNS scavenger, may thus prevent noise-induced cochlear dysfunction. Although antioxidants (such as glutathione, D-methionine, N-acetylcysteine) have been proven to provide excellent pharmacological prevention from noise-induced hearing loss, none of them were studied for the underlying biochemical mechanisms such as changes of enzyme activities, lipid peroxidation, and NO production. 1. Correlation of increased activities of Na+, K+-ATPase and Ca2+-ATPase with the reversal of cisplatin cochleotoxicity induced by D-methionine and the role of curcumin and quercetin in protection from cisplatin-induced cochleotoxicity in guinea pigs Na+, K+-ATPase and Ca2+-ATPase in the cochlear lateral wall play an important role in maintaining ionic homeostasis and physiologic function of the cochlea. The present study was designed to test whether the changes of Na+, K+-ATPase and Ca2+-ATPase activities of the cochlear lateral wall and the brainstem of guinea pigs after receiving cisplatin for 7 consecutive days were correlated with the altered auditory brainstem responses (ABR). Furthermore, whether chemoprotective agents, D-methionine, curcumin or quercetin, reversed the increased ABR threshold induced by cisplatin accompanied with the increased ATPase activities was also evaluated. The results obtained showed that cisplatin exposure caused not only a significant increase of threshold but also altered various absolute wave and interwave latencies of ABR. In addition, cisplatin significantly decreased the Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall with a good dose-response relationship. Regression analysis indicated that an increase of ABR threshold was well correlated with a decrease of both Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall. Chemoprotectants, D-methionine, curcumin or quercetin, indeed reversed both abnormalities of ABR and ATPase activities in a well correlation function. The selectivity of these observed changes induced by cisplatin and D-methionine was revealed by the findings that cisplatin-treated guinea pigs had normal III-V interwave latency of ABR and no reduction of Na+, K+-ATPase and Ca2+-ATPase specific activities in the brainstem, which is in accordance with the nonpenetrable cisplatin across the blood brain barrier. Taken all together, the present findings suggest that biochemical damage and ionic disturbance may contribute to cisplatin-induced ototoxicity to some extent, which can be reversed by D-methionine, curcumin or quercetin. 2. D-methionine inhibited cisplatin-induced vestibulotoxicity through preventing the decrease of ATPase activities and attenuating oxidative stress in guinea-pigs Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na+, K+-ATPase and Ca2+-ATPase activities in the ampullary tissue with a good dose-response relationship, but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na+, K+-ATPase and Ca2+-ATPase activities of the ampullary tissue. D-methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea-pig vestibular labyrinths. D-methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property. 3. Protection from noise-induced temporary threshold shift by D-methionine is associated with preservation of ATPase activities The present study was designed to test whether noise-induced temporary threshold shift (TTS) could be attenuated by D-methionine and if this protection was correlated with the changes of ATPase activities and oxidative stress of cochlear lateral walls in experimental animals. Thirty-two normal-hearing male guinea pigs were randomly divided into saline-treated and D-methionine-treated (300 mg/kg) experimental groups. One hour after treatment, they were exposed to a continuous broadband white noise at 105±2 dB sound pressure level for 10 min, causing TTS. Each group was then divided into four subgroups based on the number of survival days after noise exposure (0, 1, 2, and 7 days). Each subgroup had four animals and eight ears included. By means of click-evoked auditory brainstem responses (ABR), auditory thresholds of guinea pigs were measured before noise exposure, immediately after noise exposure, and before sacrifice. After animals were sacrificed, cochlear lateral walls were immediately harvested and assayed for enzyme-specific activities of Na+, K+-ATPase and Ca2+-ATPase, lipid peroxidation (LPO) and nitric oxide (NO). A 15.31±3.80 dB threshold shift was found immediately after noise exposure in saline-pretreated guinea pigs. In contrast, ABR threshold shift was significantly attenuated to 4.06±2.35 dB in D-methionine-protected animals. Furthermore, D-methionine enhanced the restoration of ABR threshold to baseline level by one day. In addition, noise significantly decreased Na+, K+-ATPase and Ca2+-ATPase activities and increased LPO and NO levels of the cochlear lateral walls, all of which could be significantly suppressed by D-methionine. In conclusions, noise-induced TTS is associated with the inhibited ATPase activities and the increased oxidative stress in guinea-pig cochlear lateral walls; all of these changes could be attenuated by D-methionine through its antioxidative property. In summary, our experimental data show that both cisplatin and noise cause the dose-dependent impairment of auditory function, and that cisplatin also leads to the dose-dependent injury of vestibular function in guinea pigs. Impairment of auditory or vestibular function has a significant positive correlation with a decrease of ATPase specific activities of cochlear lateral walls or vestibular labyrinth in cisplatin-exposed or noise-treated guinea pigs, suggesting that deterioration of ATPase activities in the inner ear may play important roles in the pathogenesis of ototoxicity. In addition, an inverse correlation between the decreased enzyme activities and increased production of LPO and NO implies that the pathogenesis of ototoxicity might be mediated by oxidative stress. Protection of D-methionine against ototoxicity induced by cisplatin or noise may relate to the reverse of the reduction of specific enzyme activities. D-methionine has a potential clinical role in the prophylaxis of ototoxicity resulted from cisplatin or noise in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:17:52Z (GMT). No. of bitstreams: 1 ntu-96-D90447003-1.pdf: 6733438 bytes, checksum: ccc9ef79837189cdc8fe044153eab08d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………i
誌謝……………………………………………………………………ii 中文摘要………………………………………………………………iii 英文摘要……………………………………………………………viii 縮寫表………………………………………………………………xvii PART 1: Background and introduction…………………………1 PART 2: Materials and methods…………………………………13 2.1. Animal preparations………………………………………13 2.2. Auditory brainstem response test…………………………17 2.3. Caloric test…………………………………………………18 2.4. Tissue collection……………………………………………19 2.5. Enzyme assays…………………………………………………20 2.6. Malondialdehyde-hydrochloric acid (MDA-HCL)-lipid peroxidation assay…………………………………………………22 2.7. Measurement of nitric oxide………………………………23 2.8. Statistical analysis…………………………………………23 PART 3: Correlation of increased activities of Na+, K+-ATPase and Ca2+-ATPase with the reversal of cisplatin cochleotoxicity induced by D-methionine and the role of curcumin and quercetin in protection from cisplatin-induced cochleotoxicity in guinea pigs 3.1. Results…………………………………………………………25 3.1.1. General health status of guinea pigs…………………25 3.1.2.1. Hearing thresholds of ABR……………………………26 3.1.2.2. Wave and interwave latencies of ABR………………27 3.1.3.1. Na+, K+-ATPase specific activity……………………28 3.1.3.2. Ca2+-ATPase specific activity………………………30 3.2. Discussion………………………………………………………31 PART 4: D-methionine inhibited cisplatin-induced vestibulotoxicity through preventing the decrease of ATPase activities and attenuating oxidative stress in guinea-pigs 4.1. Results…………………………………………………………46 4.1.1. Effects of cisplatin and/or D-methionine on general health status of guinea pigs……………………………………………………………………46 4.1.2. Effects of cisplatin and/or D-methionine on duration and slow phase velocity of caloric response………………………………………………………………47 4.1.3.1. Assay of Na+, K+-ATPase specific activity………47 4.1.3.2. Assay of Ca2+-ATPase specific activity……………48 4.1.4. Effects of cisplatin and/or D-methionine on lipid peroxidation…………………………………………………………49 4.1.5. Effects of cisplatin and/or D-methionine on nitric oxide……………………………………………………………………49 4.2. Discussion………………………………………………………50 PART 5: Protection from noise-induced temporary threshold shift by D-methionine is associated with preservation of ATPase activities 5.1. Results…………………………………………………………65 5.1.1. Effects of D-methionine on noise-induced temporary threshold shift of ABR……………………………………………65 5.1.2.1. Effects of D-methionine on the noise-induced decrease of Na+, K+-ATPase specific activity………………66 5.1.2.2. Effects of D-methionine on the noise-induced decrease of Ca2+-ATPase specific activity……………………67 5.1.3. Effects of D-methionine on noise-induced lipid peroxidation…………………………………………………………68 5.1.4. Effects of D-methionine on noise-induced nitric oxide……………………………………………………………………68 5.2. Discussion………………………………………………………69 PART 6: Conclusion and future prospection……………………82 PART 7: References…………………………………………………86 PART 8: List of publications …………………………………108 | |
| dc.language.iso | en | |
| dc.subject | 前庭毒性 | zh_TW |
| dc.subject | 聽性腦幹反應 | zh_TW |
| dc.subject | 鈣-腺三磷酸酵素 | zh_TW |
| dc.subject | 溫差測驗 | zh_TW |
| dc.subject | 順-雙氨雙氯鉑 | zh_TW |
| dc.subject | 耳蝸毒性 | zh_TW |
| dc.subject | D型甲硫胺酸 | zh_TW |
| dc.subject | 脂質過氧化物 | zh_TW |
| dc.subject | 鈉鉀-腺三磷酸酵素 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 噪音 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 暫時聽閾值變動 | zh_TW |
| dc.subject | 前庭眼反射 | zh_TW |
| dc.title | D型甲硫胺酸降低順-雙氨雙氯鉑及噪音引發天竺鼠耳毒性之作用機轉 | zh_TW |
| dc.title | The mechanisms of D-methionine attenuating ototoxicity induced by cisplatin or noise in guinea-pigs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉興華,林仁混,楊怡和,楊榮森 | |
| dc.subject.keyword | 聽性腦幹反應,鈣-腺三磷酸酵素,溫差測驗,順-雙氨雙氯鉑,耳蝸毒性,D型甲硫胺酸,脂質過氧化物,鈉鉀-腺三磷酸酵素,一氧化氮,噪音,氧化壓力,暫時聽閾值變動,前庭眼反射,前庭毒性, | zh_TW |
| dc.subject.keyword | Auditory brainstem response,Ca2+-ATPase,Caloric test,Cisplatin,Cochleotoxicity,D-methionine,Lipid peroxidation,Na+, K+-ATPase,Nitric oxide,Noise,Oxidative stress,Temporary threshold shift,Vestibulo-ocular reflex,Vestibulotoxicity, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-01-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
