Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorMing-Hsiu Changen
dc.contributor.author張明修zh_TW
dc.date.accessioned2021-06-08T06:15:30Z-
dc.date.copyright2007-02-01
dc.date.issued2007
dc.date.submitted2007-01-31
dc.identifier.citationReference:
Chapter 1
[1] S. Nakamura and G. Fasol, The Blue Laser Diode (springer, Berlin, 1997).
[2] R.W.G. Wyckoff, Crystal Structure , Volumes 1-4, (New York: Interscience Publishers) (1995).
[3] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J.Cryst. Growth. 89, 209 (1989).
[4] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
[5] Jr. T. W. Weeks, M. D. Bremser, K. S. Ailey, E. Carlson, W. G. Perry and R. F. Davis, Appl. Phys. Lett. 67, 401 (1995).
[6] C.A. Paker, J.C. Rolerts, S. M. Bedair, M.J. Reed, S.X. Liu and N.A. EI-Masry, Appl. Phys. Lett. 75, 2776 (1999).
[7] T. Hino, S. Tomiya, T. Miyajima, K. Yamashima, S. Hashimoto and M.Ikeda, Appl. Phys. Lett. 76, 3421 (2000).
[8] D. V. Lang and C. H. Henry, Phys. Rev. Lett. 35, 1525 (1975).
[9] S. Tomiya, E. Morita, M. Ukita, H. Okuyama, S. Itoh, K. Nakano, and A. Ishibashi, Appl. Phys. Lett. 66, 1208 (1995).
[10] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, Appl. Phys. Lett. 72, 692 (1998).
[11] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996).
[12] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 36, L177 (1997)
[13] H. Sakai, T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Amano, I. Akasai, J. Cryst. Growth 189/190, 831 (1998)
[14] F. Bernardini, Fiorentini, and D.Vanderbilt, Phys. Rev. B 56, R10024 -R10027 (1997).
[15] S. H. Park and S. L. Chuang, J. Appl. Phys. 87, 353 (2000).
[16] I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
[17] S. Yu. Karpov, J. Nitride Semicond. Res. 3, 16 (1998).
[18] M.K. Behbehani, E.L. Piner, S.X. Liu, N.A. El-Masry and S.M. Bedair, Appl. Phys. Lett. 75, 2202 (1999)
[19] E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, Appl. Phys. Lett., Vol. 70, No. 4, 27 January 1997
[20] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, J. Appl. Phys., Vol. 94, No. 3, 1 August 2003
[21] X. W. Sun, S. F. Yu, C. X. Xu, C. Yuen, B.J. Chen, and S. Li, Jpn. J. Appl. Phys. 42, 229 (2003).
[22] W. I. Park, Y. H. Jun, S. W. Jung, and G. Yi, Appl. Phys. Lett. 82, 964 (2003).
[23] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300, 1249 (2003).
[24] Y. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng. B 77, 190 (2000).
[25] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
[26] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang, and Y. Segawa, Thin Solid Films 433, 131 (2003).
[27] T. Gruber, C. Kirchner, K. Thonke, R. Sauer, and A. Waag, Phys. Stat. Sol. (a) 192, 166 (2002).
[28] S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
[29] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, Y. Segawa, and N. Usami, Appl. Phys. Lett. 86, 032105 (2005).
[30] F. Tuomisto, V. Ranki, K. Saarinen, and D C. Look, Phys. Rev. Lett. 91, 205502 (2003)
[31] B K Meyer, J Sann, D M Hofmann, C Neumann and A Zeuner, Semicond. Sci. Technol. 20, S62–S66 (2005)
[32] XQMeng, D Z Shen, J Y Zhang, D X Zhao, LDong, YMLu, Y C Liu and X WFan, Nanotechnology 16, 609–612 (2005)
[33] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma,J. Phys. Chem. B 108, 10899-10902 (2004).
[34] Z. R. Dai, Z. W. Pan, Z. L. Wang, AdV. Funct. Mater. 13, 9 (2003).
[35] C. H. Chia, T. Makino, K. Tamura, Y. Segawa, A. Ohtomo, H. Koinuma, Appl. Phys. Lett. 82, 1848 (2003).
[36] S. W. Kim, Sz. Fujita, Sg. Fujita, Appl. Phys. Lett. 81, 5036 (2002).
[37] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Appl. Phys. Lett. 83, 1635 (2003).
[38] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001).
[39] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001).
Chapter 2
[1] C. Kisielowski, in: Semiconductors and Semimetals, Vol. 57 Eds. J. I. Pankove and T. D. Moustaks, Academic Press, New York 1999 (pp. 275 to 317), and reference therein.
[2] A. Rosenauer, T. Reisinger, J. Zweck, W. Gebhardt, and D. Gerthsen, Optik 102, 63 (1996).
[3] A. Rosenauer, T. Remmele, D. Gerthsen , K. Tillmann, and A. Forster, Optik 105, 99 (1997).
[4] M. Van Schilfgarde, A. Sher, and A.-B. Chen, J. Cryst. Growth 178, 8 (1997).
Chapter 4
[1] T. M. Smeeton, M. J. Kappers, J. S. Barnard, and C. J. Humphreys, Proceeding of Symposium Y, MARS Fall Meeting (2003).
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff., Appl. Phys. Lett. 80 4741(2002)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25488-
dc.description.abstract在本研究的第一部份中,我們比較兩片分別以不同的長晶方法成長的氮化銦鎵/氮化鎵多重量子井樣品的奈米結構以及光學特性。其中一片樣品在磊晶的過程中間斷地導入銦原子氣體和鎵原子氣體,另外一片樣品則以傳統方法成長。我們利用穿透式電子顯微術及應力分佈分析軟體分析樣本的奈米結構。由穿透式電子顯微術所得之影像,我們可觀察到量子井間不同程度的銦原子聚集現象和成分不均勻的變化以及量子井邊界的清晰度差異。我們發現以流量調變長晶法成長的樣品擁有較為顯著的銦原子聚集現象,並且擁有較好的均勻度和較為清晰的量子井邊界以及較長的衰減時間,但是卻呈現較低的發光效率。
在本研究的第二部分中,我們比較三個不同磊晶條件的氮化銦鎵/氮化鎵奈米結晶柱的奈米結構以及光學特性。在第一個和第二個樣品中,氮化鎵奈米結晶柱分別成長在矽晶圓和藍寶石晶圓上,而第三個樣品則是在藍寶石晶圓上成長氮化鎵奈米結晶柱,並且再成長氮化銦鎵/氮化鎵多重量子井。透過穿透式電子顯微術所得之影像,我們可以瞭解這三個樣品的結晶形狀、密度和結晶品質,並且透過光學儀器的量測,我們可以推論奈米結晶住結構內沒有線性差排的存在。
zh_TW
dc.description.abstractIn this research, we perform the material and optical analyzes of two InGaN/GaN multiple-quantum-well samples to see the effects of the modulation flow growth process. Also, the material and optical properties of three GaN nano-columns samples are studied. The material analysis methods include X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), strain state analysis (SSA), scanning electron microscopy (SEM), and cathodoluminescence (CL). In optical characterization, the fundamental optical properties are obtained with photoluminescence spectroscopy.
In studying the effect of modulation flow growth process for InGaN/GaN quantum wells, from the HRTEM results, we find that the sample grown with the modulation flow process has a clearer interface between a well and a barrier. By analyzing HRTEM images with SSA, we can estimate the indium concentration in a well. Besides, from the line-scan result of the SSA images, we can see that the edge part of the sample wafer with the modulation flow process has a better-defined quantum-well structure than the counter part of the sample without the modulation flow process. From the XRD results, we can confirm that the sample with the modulation flow process has a clearer well boundary.
Then, we compare the nano-structures of three samples of GaN nano-columns. From the HRTEM images, one can see that the grown GaN nano-columns are threading-dislocation free. We compare the results of HRTEM, XRD, SEM, CL and micro PL between three samples, A844, A852 and A855. Sample A844 contains GaN nano-columns growth on sapphire, sample A852 contains fine InGaN/GaN quantum wells on the top of GaN nano-columns, which are grown on sapphire, and sample A855 contains GaN nano-columns grown on silicon. Sample A844 has a higher nano-column density when compared with sample A855. Based on the XRD results, sample A844 has a larger tilt and sample A855 has a larger twist. From the PL and CL results, we can observe that the different emission wavelengths of these three samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:15:30Z (GMT). No. of bitstreams: 1
ntu-96-J93941004-1.pdf: 8784885 bytes, checksum: 9a5d20f93e69ff4b7b5f79080cd17d5b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Chapter 1 Introduction
1.1 Applications and Reviews of Nitride-Based Materials…………….1
1.2 Review on the characteristics of InGaN/GaN Structure. …….……3
1.2.1 Crystal Structure of Nitride….……………………………..3
1.2.2 Substrate for Nitride Epitaxy………………….……………4
1.2.3 Defect for Nitride……………………………..…………….5
1.2.4 Strain Effect………………………………………..……….6
1.2.5 Spinodal Decomposition and Phase Separation……………7
1.2.6 Indium Aggregation and Quantum Dot-like Structure……..9
1.2.7 Piezoelectric Field………………………………………...10
1.3 Effect of Modulation Flow… ….12
1.3.1 Si-doping in InGaN or GaN films………………………...12
1.3.2 Si-doping in InGaN quantum well…………………….….12
1.4 Characteristics of Nano Column Structure
1.5 Research Motivation and Research Problems……….………..….15
Chapter 2 Analysis Methods
2.1 Specimen Preparation of Cross-section TEM……………..……..24
2.2 Material Analysis……..…………………………………………..27
2.2.1 Transmission electron microscopy (TEM)……….……...27
2.2.2 X-Ray Diffraction (XRD)………………………………..30
2.2.3 Strain State Analysis……………………………………..31
2.3 Optical Analysis…………………………………………………33
2.3.1 Photoluminescence (PL)………………………………....33
2.3.2 Photoluminescence Excitation (PLE)…………………..34
Chapter 3 InGaN/GaN Multiple-quantum-well Structures with Modulation Flow Growth
3.1 Sample Structure…………..…………………….…………..45
3.2 Comparisons of HRTEM Images of the Low Indium Content Sample…………………………………………….……………..46
3.3 Comparisons of HRTEM Images of the High Indium Content Sample…………………………………………………...……...47
3.4 Comparisons of HRTEM Images Among Samples of Different Indium Contents (only barrier doping)……………….….……...48
3.5 DALI Results of the High Indium Content Sample……………...48
Chapter 4 Optical and Material Properties of the Samples
4.1 PL and PLE Results..…………………………………………….67
4.2 XRD and AFM Results………………………….………………..72
Chapter 5 Conclusions
References……………………………………………………..86
dc.language.isoen
dc.subject穿透式電子顯微鏡zh_TW
dc.subject奈米結晶柱zh_TW
dc.subject流量調變長晶法zh_TW
dc.subjectthreading dislocation freeen
dc.subjectmodulation flowen
dc.subjectTEMen
dc.subjectnano-columnen
dc.subjectGaNen
dc.title以流量調變長晶法成長之氮化銦鎵/氮化鎵多重量子井結構與奈米結晶柱之穿透式電子顯微術研究zh_TW
dc.titleTransmission Electron Microscopy Studies on InGaN/GaN Multiple Quantum-well Structures Grown with Modulation Flow Process and InGaN/GaN Nano-column Structuresen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,李允立
dc.subject.keyword流量調變長晶法,奈米結晶柱,穿透式電子顯微鏡,zh_TW
dc.subject.keywordGaN,nano-column,TEM,modulation flow,threading dislocation free,en
dc.relation.page112
dc.rights.note未授權
dc.date.accepted2007-01-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
8.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved