請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25455完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | |
| dc.contributor.author | Yu-Chih Liu | en |
| dc.contributor.author | 劉育志 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:14:08Z | - |
| dc.date.copyright | 2007-06-23 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-04-18 | |
| dc.identifier.citation | Allen, K. D., E. J. Ridgway, and L. A. Parsons. 1994. Hexachlorophane powder and neonatal staphylococcal infection. J.Hosp.Infect. 27:29-33.
Anand, K., J. Ziebuhr, P. Wadhwani, J. R. Mesters, and R. Hilgenfeld. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763-1767. Auerbach, B. J., J. S. Kiely, and J. A. Cornicelli. 1992. A spectrophotometric microtiter-based assay for the detection of hydroperoxy derivatives of linoleic acid. Anal.Biochem. 201:375-380. Bacha, U., J. Barrila, A. Velazquez-Campoy, S. A. Leavitt, and E. Freire. 2004. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 43:4906-4912. Baggio, V., F. Ott, R. W. Fischer, H. Gram, J. Peele, D. Spreng, H. Schmokel, and T. W. Jungi. 2005. Production of antibodies to canine IL-1beta and canine TNF to assess the role of proinflammatory cytokines. Vet.Immunol.Immunopathol. 107:27-39. Balkwill, F. and A. Mantovani. 2001. Inflammation and cancer: back to Virchow? Lancet 357:539-545. Berdowska, I. 2004. Cysteine proteases as disease markers. Clin.Chim.Acta 342:41-69. Bhattacharya, S. K., E. D. Cox, J. C. Kath, A. M. Mathiowetz, J. Morris, J. D. Moyer, L. R. Pustilnik, K. Rafidi, D. T. Richter, C. Su, and M. D. Wessel. 2003. Achieving selectivity between highly homologous tyrosine kinases: a novel selective erbB2 inhibitor. Biochem.Biophys.Res.Commun. 307:267-273. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr.D.Biol.Crystallogr. 54:905-921. Carter, G. W., P. R. Young, D. H. Albert, J. Bouska, R. Dyer, R. L. Bell, J. B. Summers, and D. W. Brooks. 1991. 5-lipoxygenase inhibitory activity of zileuton. J.Pharmacol.Exp.Ther. 256:929-937. Chan, C. C., S. Boyce, C. Brideau, S. Charleson, W. Cromlish, D. Ethier, J. Evans, A. W. Ford-Hutchinson, M. J. Forrest, J. Y. Gauthier, R. Gordon, M. Gresser, J. Guay, S. Kargman, B. Kennedy, Y. Leblanc, S. Leger, J. Mancini, G. P. O'Neill, M. Ouellet, D. Patrick, M. D. Percival, H. Perrier, P. Prasit, I. Rodger, and . 1999. Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J.Pharmacol.Exp.Ther. 290:551-560. Congreve, M., C. W. Murray, and T. L. Blundell. 2005. Structural biology and drug discovery. Drug Discov.Today 10:895-907. Coussens, L. M. and Z. Werb. 2002. Inflammation and cancer. Nature 420:860-867. Cuenda, A., J. Rouse, Y. N. Doza, R. Meier, P. Cohen, T. F. Gallagher, P. R. Young, and J. C. Lee. 1995. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364:229-233. Cuendet, M. and J. M. Pezzuto. 2004. Antitumor activity of bruceantin: an old drug with new promise. J.Nat.Prod. 67:269-272. Dinarello, C. A. 1996. Biologic basis for interleukin-1 in disease. Blood 87:2095-2147. Drosten, C., S. Gunther, W. Preiser, W. S. van der, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N.Engl.J.Med. 348:1967-1976. Fan, K., P. Wei, Q. Feng, S. Chen, C. Huang, L. Ma, B. Lai, J. Pei, Y. Liu, J. Chen, and L. Lai. 2004. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J.Biol.Chem. 279:1637-1642. Funkhouser, A. W., J. A. Kang, A. Tan, J. Li, L. Zhou, M. K. Abe, J. Solway, and M. B. Hershenson. 2004. Rhinovirus 16 3C protease induces interleukin-8 and granulocyte-macrophage colony-stimulating factor expression in human bronchial epithelial cells. Pediatr.Res. 55:13-18. Hall-Jackson, C. A., M. Goedert, P. Hedge, and P. Cohen. 1999. Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 18:2047-2054. Hancock, C. N., A. T. Macias, A. D. Mackerell, Jr., and P. Shapiro. 2006. Mitogen activated protein (MAP) kinases: development of ATP and non-ATP dependent inhibitors. Med.Chem. 2:213-222. Hata, S., T. Sato, H. Sorimachi, S. Ishiura, and K. Suzuki. 2000. A simple purification and fluorescent assay method of the poliovirus 3C protease searching for specific inhibitors. J.Virol.Methods 84:117-126. Heath, R. J., J. Li, G. E. Roland, and C. O. Rock. 2000. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J.Biol.Chem. 275:4654-4659. Hegyi, A. and J. Ziebuhr. 2002. Conservation of substrate specificities among coronavirus main proteases. J.Gen.Virol. 83:595-599. Hegyi, A., A. Friebe, A. E. Gorbalenya, and J. Ziebuhr. 2002. Mutational analysis of the active centre of coronavirus 3C-like proteases. J.Gen.Virol. 83:581-593. Hougee, S., A. Sanders, J. Faber, Y. M. Graus, W. B. van den Berg, J. Garssen, H. F. Smit, and M. A. Hoijer. 2005. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem.Pharmacol. 69:241-248. Johnston, P. A. and P. A. Johnston. 2002. Cellular platforms for HTS: three case studies. Drug Discov.Today 7:353-363. Jones, G., P. Willett, R. C. Glen, A. R. Leach, and R. Taylor. 1997. Development and validation of a genetic algorithm for flexible docking. J.Mol.Biol. 267:727-748. Joyce, J. A., A. Baruch, K. Chehade, N. Meyer-Morse, E. Giraudo, F. Y. Tsai, D. C. Greenbaum, J. H. Hager, M. Bogyo, and D. Hanahan. 2004. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443-453. Jung, J., K. Ishida, and T. Nishihara. 2004. Anti-estrogenic activity of fifty chemicals evaluated by in vitro assays. Life Sci. 74:3065-3074. Kalmes, A., J. Deou, A. W. Clowes, and G. Daum. 1999. Raf-1 is activated by the p38 mitogen-activated protein kinase inhibitor, SB203580. FEBS Lett. 444:71-74. Kao, R. Y., A. P. To, L. W. Ng, W. H. Tsui, T. S. Lee, H. W. Tsoi, and K. Y. Yuen. 2004. Characterization of SARS-CoV main protease and identification of biologically active small molecule inhibitors using a continuous fluorescence-based assay. FEBS Lett. 576:325-330. Keseru, G. M. and G. M. Makara. 2006. Hit discovery and hit-to-lead approaches. Drug Discov.Today 11:741-748. Kjaerheim, V., P. Barkvoll, S. M. Waaler, and G. Rolla. 1995. Triclosan inhibits histamine-induced inflammation in human skin. J.Clin.Periodontol. 22:423-426. Kollias, G., E. Douni, G. Kassiotis, and D. Kontoyiannis. 1999. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol.Rev. 169:175-194. Koren, G., S. King, S. Knowles, and E. Phillips. 2003. Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ. 168:1289-1292. Korth, C., B. C. May, F. E. Cohen, and S. B. Prusiner. 2001. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc.Natl.Acad.Sci.U.S.A 98:9836-9841. Kracht, M. and J. Saklatvala. 2002. Transcriptional and post-transcriptional control of gene expression in inflammation. Cytokine 20:91-106. Kumar, S., P. C. McDonnell, R. J. Gum, A. T. Hand, J. C. Lee, and P. R. Young. 1997. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem.Biophys.Res.Commun. 235:533-538. Kuo, C. J., Y. H. Chi, J. T. Hsu, and P. H. Liang. 2004. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem.Biophys.Res.Commun. 318:862-867. Lakka, S. S., C. S. Gondi, N. Yanamandra, W. C. Olivero, D. H. Dinh, M. Gujrati, and J. S. Rao. 2004. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23:4681-4689. Lane, J. R., D. A. Neumann, A. Lafond-Walker, A. Herskowitz, and N. R. Rose. 1993. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J.Immunol. 151:1682-1690. Lapatto, R., T. Blundell, A. Hemmings, J. Overington, A. Wilderspin, S. Wood, J. R. Merson, P. J. Whittle, D. E. Danley, K. F. Geoghegan, and . 1989. X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature 342:299-302. Laufer, S., C. Greim, and T. Bertsche. 2002. An in-vitro screening assay for the detection of inhibitors of proinflammatory cytokine synthesis: a useful tool for the development of new antiarthritic and disease modifying drugs. Osteoarthritis.Cartilage. 10:961-967. Laufer, S. A., S. Margutti, and M. D. Fritz. 2006. Substituted Isoxazoles as Potent Inhibitors of p38 MAP Kinase. ChemMedChem. 1:197-207. Lee, M. R. and C. Dominguez. 2005. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr.Med.Chem. 12:2979-2994. Lorusso, D. J. and T. L. Miller. 1981. Hexachlorophene-induced changes in erythrocyte membrane ATPase activity. Res.Commun.Chem.Pathol.Pharmacol. 31:205-216. Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper. 2003. The Genome sequence of the SARS-associated coronavirus. Science 300:1399-1404. Marx, J. 2004. Cancer research. Inflammation and cancer: the link grows stronger. Science 306:966-968. Matsumura, H., M. Matsuoka, H. Igisu, and M. Ikeda. 1997. Cooperative inhibition of acetylcholinesterase activities by hexachlorophene in human erythrocytes. Arch.Toxicol. 71:151-156. Meyer, S., N. G. Kohler, and A. Joly. 1997. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett. 413:354-358. Miller, M., J. Schneider, B. K. Sathyanarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. Kent, and A. Wlodawer. 1989. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246:1149-1152. Morel, C., G. Ibarz, C. Oiry, E. Carnazzi, G. Berge, D. Gagne, J. C. Galleyrand, and J. Martinez. 2005. Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase. J.Biol.Chem. 280:21384-21393. Moss, S. F. and M. J. Blaser. 2005. Mechanisms of disease: Inflammation and the origins of cancer. Nat.Clin.Pract.Oncol. 2:90-97. Noguchi, K., M. Yanai, M. Shitashige, T. Nishihara, and I. Ishikawa. 2000. Cyclooxygenase-2-dependent prostaglandin production by peripheral blood monocytes stimulated with lipopolysaccharides isolated from periodontopathogenic bacteria. J.Periodontol. 71:1575-1582. Papi, A. and S. L. Johnston. 1999. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. J.Biol.Chem. 274:9707-9720. Patick, A. K., S. L. Binford, M. A. Brothers, R. L. Jackson, C. E. Ford, M. D. Diem, F. Maldonado, P. S. Dragovich, R. Zhou, T. J. Prins, S. A. Fuhrman, J. W. Meador, L. S. Zalman, D. A. Matthews, and S. T. Worland. 1999. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob.Agents Chemother. 43:2444-2450. Peiris, J. S., S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang, R. W. Yung, T. K. Ng, and K. Y. Yuen. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319-1325. Philip, M., D. A. Rowley, and H. Schreiber. 2004. Inflammation as a tumor promoter in cancer induction. Semin.Cancer Biol. 14:433-439. Riendeau, D., S. Charleson, W. Cromlish, J. A. Mancini, E. Wong, and J. Guay. 1997. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Can.J.Physiol Pharmacol. 75:1088-1095. Rogers, M. V. 1997. Light on high-throughput screening: fluorescence-based assay technologies. Drug Discovery Today 4:156-160. Romano, M., X. S. Chen, Y. Takahashi, S. Yamamoto, C. D. Funk, and C. N. Serhan. 1993. Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem.J. 296 ( Pt 1):127-133. Rota, P. A., M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns, T. G. Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A. D. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Anderson, and W. J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394-1399. Seybert, A., J. Ziebuhr, and S. G. Siddell. 1997. Expression and characterization of a recombinant murine coronavirus 3C-like proteinase. J.Gen.Virol. 78 ( Pt 1):71-75. Simmons, D. L. 2006. What makes a good anti-inflammatory drug target? Drug Discov.Today 11:210-219. Skaare, A. B., V. Kjaerheim, P. Barkvoll, and G. Rolla. 1997. Does the nature of the solvent affect the anti-inflammatory capacity of triclosan? An experimental study. J.Clin.Periodontol. 24:124-128. Srivastava, K. C. and T. Mustafa. 1992. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med.Hypotheses 39:342-348. Staack, A., D. Tolic, G. Kristiansen, D. Schnorr, S. A. Loening, and K. Jung. 2004. Expression of cathepsins B, H, and L and their inhibitors as markers of transitional cell carcinoma of the bladder. Urology 63:1089-1094. Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J.Gen.Virol. 84:2305-2315. Toledo, L. M., N. B. Lydon, and D. Elbaum. 1999. The structure-based design of ATP-site directed protein kinase inhibitors. Curr.Med.Chem. 6:775-805. Tong, L., S. Pav, D. M. White, S. Rogers, K. M. Crane, C. L. Cywin, M. L. Brown, and C. A. Pargellis. 1997. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat.Struct.Biol. 4:311-316. Toth, M. V. and G. R. Marshall. 1990. A simple, continuous fluorometric assay for HIV protease. Int.J.Pept.Protein Res. 36:544-550. Turner, R. B., K. W. Weingand, C. H. Yeh, and D. W. Leedy. 1998. Association between interleukin-8 concentration in nasal secretions and severity of symptoms of experimental rhinovirus colds. Clin.Infect.Dis. 26:840-846. Umeda, M., T. Ichiyama, S. Hasegawa, M. Kaneko, T. Matsubara, and S. Furukawa. 2002. Theophylline inhibits NF-kappaB activation in human peripheral blood mononuclear cells. Int.Arch.Allergy Immunol. 128:130-135. Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, F. Di, V, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y. H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigo, M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y. H. Chiang, M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, and M. Nodell. 2001. The sequence of the human genome. Science 291:1304-1351. Wallace, A. C., R. A. Laskowski, and J. M. Thornton. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127-134. Wang, Z., B. J. Canagarajah, J. C. Boehm, S. Kassisa, M. H. Cobb, P. R. Young, S. Abdel-Meguid, J. L. Adams, and E. J. Goldsmith. 1998. Structural basis of inhibitor selectivity in MAP kinases. Structure. 6:1117-1128. White, F. A., S. K. Bhangoo, and R. J. Miller. 2005. Chemokines: integrators of pain and inflammation. Nat.Rev.Drug Discov. 4:834-844. Wu, C. Y., J. T. Jan, S. H. Ma, C. J. Kuo, H. F. Juan, Y. S. Cheng, H. H. Hsu, H. C. Huang, D. Wu, A. Brik, F. S. Liang, R. S. Liu, J. M. Fang, S. T. Chen, P. H. Liang, and C. H. Wong. 2004. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc.Natl.Acad.Sci.U.S.A 101:10012-10017. Yamamoto, N., R. Yang, Y. Yoshinaka, S. Amari, T. Nakano, J. Cinatl, H. Rabenau, H. W. Doerr, G. Hunsmann, A. Otaka, H. Tamamura, N. Fujii, and N. Yamamoto. 2004. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem.Biophys.Res.Commun. 318:719-725. Yan, L., G. M. Anderson, M. DeWitte, and M. T. Nakada. 2006. Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur.J.Cancer 42:793-802. Yu, J. J., C. S. Tripp, and J. H. Russell. 2003. Regulation and phenotype of an innate Th1 cell: role of cytokines and the p38 kinase pathway. J.Immunol. 171:6112-6118. Zaman, G. J. 2004. Cell-based screening. Drug Discov.Today 9:828-830. Zhang, J. H., T. D. Chung, and K. R. Oldenburg. 1999. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J.Biomol.Screen. 4:67-73. Zhang, X. W. and Y. L. Yap. 2004. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg.Med.Chem. 12:2517-2521. Zhu, Z., W. Tang, A. Ray, Y. Wu, O. Einarsson, M. L. Landry, J. Gwaltney, Jr., and J. A. Elias. 1996. Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation. J.Clin.Invest 97:421-430. Zhu, Z., W. Tang, J. M. Gwaltney, Jr., Y. Wu, and J. A. Elias. 1997. Rhinovirus stimulation of interleukin-8 in vivo and in vitro: role of NF-kappaB. Am.J.Physiol 273:L814-L824. Ziebuhr, J., G. Heusipp, and S. G. Siddell. 1997. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J.Virol. 71:3992-3997. Ziebuhr, J. and S. G. Siddell. 1999. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J.Virol. 73:177-185. Ziebuhr, J., S. Bayer, J. A. Cowley, and A. E. Gorbalenya. 2003. The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J.Virol. 77:1415-1426. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25455 | - |
| dc.description.abstract | 在早期藥物探索的領域上,主要的工作就是要鑑別出具有藥物治療效果的目標基因或是蛋白質,並發展出一個適當的藥物篩選平台來找出有潛力的化合物。隨著高通量的藥物篩選平台技術的發展與成熟,此項技術已成為近年來藥廠相當依賴的篩選方法;在這樣的平台中,主要為利用生化方法來建立酵素活性、受體結合或是細胞功能的測定,並將此種測定方法學應用於96孔或是384孔盤式分析,和輔以自動化機械設備來達成高速大量分子篩選的目標。此篇論文的主要目標即在於發展不同的藥物篩選平台,並藉由小量的篩選過程中找出具有潛力的化合物,並同時驗證篩選系統的穩定度和適當性。
我們分別設計一個酵素活性篩選平台與一個細胞激素釋出的細胞功能篩選平台。前者利用螢光共振能量轉移 (FRET) 原理建立以螢光訊號來反映酵素活性之藥物篩選系統,後者則為找尋可抑制細菌毒素 (LPS) 誘導周邊血液單核細胞腫瘤壞死因子α (TNF-α) 和介白質1β (IL-1β) 上升的化合物之細胞功能篩選平台。篩選平台系統的穩定性可由 Z-factor 來評估,在螢光共振能量轉移法的酵素活性篩選平台是 0.81,而細胞功能篩選平台中的 TNF-α 和 IL-1β 測定則分別是 0.72 和 0.76。由此結果看來,所發展出的這兩個篩選平台是相當穩定且可行。 酵素活性篩選平台是利用非典型肺炎冠状病毒 (SARS-CoV) 3CL蛋白脢為藥物作用標的,3CL 蛋白脢對病毒蛋白質生成、活性及修飾上扮演相當重要的角色,因此成為一個治療非典型肺炎或其他冠狀病毒引發之疾病的藥物作用目標。我們利用螢光共振能量轉移方法來篩選數百種已知的化合物,篩選出對3CL蛋白酵素活性有抑制作用的潛力化合物,其中以 hexachlorophene 是最具潛力的抑制化合物,其抑制常數Ki是4 µM;它的抑制模式是在受質結合處與受質競爭, 並且其抑制能力隨著作用時間的延長,會有增強的效果。除此之外,triclosan和nelfinavir也有抑制作用,但抑制能力卻約僅有hexachlorophene的十分之一,抑制常數 Ki分別是40 µM 和21 µM。進一步分析 hexachlorophene對蛋白脢抑制能力的專一性,在四十多種的蛋白脢活性分析中,發現 hexachlorophene 同時會對部份的cysteine和aspartic蛋白脢有抑制作用,而這些蛋白脢多與癌症調控相關。 在建立第二個藥物篩選系統上,則是利用細胞發炎的外生性刺激因子 (LPS), 誘導人類周邊血液單核細胞產生腫瘤壞死因子α (TNF-α) 和介白質1β (IL-1β),藉此實驗中找尋能抑制腫瘤壞死因子α和介白質1β表現,而具有抗發炎潛力的化合物。在將近五百多種的化合物中,MT4最具有抑制效果,其對於腫瘤壞死因子α和介白質1β的百分之五十抑制濃度 (IC50) 分別為22 和44 nM。接著我們利用in vitro激脢活性實驗, 探討MT4抑制訊息傳遞路徑的目標酵素,發現MT4對於p38α和p38β的抑制能力隨濃度增高而增高,對於 p38γ和p38δ 的則具中度抑制能力;MT4對於p38α、p38β、p38γ和p38δ的IC50分別是0.13 µM、0.55 µM、5.47 µM 和 8.63 µM。進一步實驗發現 MT4 為 p38α 的腺苷三磷酸 (ATP) 競爭性抑制物。此外,MT4 亦可抑制發炎相關的第二環氧化脢 (cyclooxygenase-2) 的酵素活性和降低細胞中前列腺素E2 (prostaglandin-2) 的釋出。 在整個研究中,我們設立了兩個優良的篩選平台,分別鑑定出非典型肺炎冠狀病毒 3CL 蛋白脢和 p38α 的抑制物。經過分子崁合,顯示化合物與酵素彼此間有多個可能的作用存在,這些篩選出的化合物將可做為未來進一步藥物設計的起點。 | zh_TW |
| dc.description.abstract | The challenge of the early drug discovery is to identify molecular targets that hold the greatest potential for therapeutic intervention and then to develop an appropriate assay model for screening libraries composed of individual organic or natural molecules. The first step in this early drug discovery pipeline is typically the establishment of high-throughput screen (HTS). And in vitro biochemical and cellular assays have long been used for HTS of large amount of molecules in 96-well and 384-well plate formats. The specific aim of this study is to develop and validate diverse methods in order to demonstrate their suitability for screening in the drug discovery, and perform small-scale screening and find potential hits or leads in an academic research.
In the current work, a FRET (fluorescence resonance energy transfer) assay was developed for the evaluation of SARS-CoV 3CL protease activity. And a cell-based assay was validated for detecting the release level of TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) using LPS-stimulating peripheral blood mononuclear cells (PBMC) model. The assay quality parameter, Z’-factor, was employed. The Z’-factor of the FRET assay was 0.81 and the PBMC cell-based assay was 0.72 and 0.76 respectively for TNF-α and IL-1β release. In terms of the value of the Z’-factor, these screening assay qualities were classified with an excellent performance. The SARS-CoV 3CL protease is an essential enzyme for viral proteins processing and regarded as a good drug target to SARS-CoV replication. Here, hundreds of known compounds were examined by using FRET screening assay. Among these drugs, hexachlorophene was identified as the most potent inhibitor of SARS-CoV 3CL protease (Ki = 4 µM). Further characterization revealed that its binding mode was competitive with the substrate-binding site and the inhibitory effect was pre-incubation time dependent. Besides, two other known drugs, triclosan and nelfinavir, were 10-fold less potent (Ki = 40 µM and Ki = 21 µM respectively) than hexachlorophene. Furthermore, to evaluate the specificity of hexachlorophene, over forty protease assays were conducted to screen its inhibitory effects. The results showed that hexachlorophene not only inhibited SARS-CoV 3CL protease but also inhibited some of cysteine and aspartic proteases, which related to tumor progression and metastasis. After identifying hexachlorophene and its analogues as the inhibitors of SARS-CoV 3CL protease using an enzyme assay model, we try to establish a cell-based screening system to find some anti-inflammatory inhibitors and then identify their molecular targets. LPS (lipopolysaccharide), one of exogenous inflammatory agent, stimulates PBMC to synthesize or release pro-inflammatory cytokines. Therefore, our strategy was to screen test compounds using LPS stimulated-PBMC and find whether some of them can inhibit the release of TNF-α and/or IL-1β. Then we can examine this kind of potential anti-inflammatory candidates to understand their inhibitory targets. Among nearly 500 test compounds, we found that MT4 had the suppressive action on the release of TNF-α and IL-1β, with IC50 values of 22 and 44 nM, respectively. After we evaluated the anti-cytokine effect of MT4 in terms of the inhibition of p38 MAPK, JNK and ERK activity using in vitro kinase assay, MT4 inhibited the activity of p38α and p38β in a concentration-dependent manner. It also displayed moderate inhibitory activity on p38γ and δ. The IC50 values were 0.13, 0.55, 5.47 and 8.63 µM for p38α, β, γ and δ respectively. Further characterization of enzyme kinetics showed that the binding mode of MT4 was competitive with the ATP substrate-binding site of p38α MAPK. Beside the cytokine synthesis and release pathway, we also studied MT4 effect on other inflammatory enzymes and found that it could inhibit cycloxygenase-2 to reduce the prostaglandin-2 production. In summary, our studies offer simple and excellent screens to identify anti-SARS and anti-inflammatory inhibitors. These identified small molecules that can serve as chemical starting points or high quality leads for further optimization to provide a good opportunity for developing novel and potent drug candidates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:14:08Z (GMT). No. of bitstreams: 1 ntu-96-D91442002-1.pdf: 1591755 bytes, checksum: 08398081142f8b2243af57a74bbd2a3b (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 論文摘要 i
ABSTRACT iv CONTENT vii CONTENT OF FIGURES AND TABLES ix CHAPTER I- Overview and Rationale 1 CHAPTER II- Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease 9 SUMMARY 10 INTRODUCTION 11 MATERIALS AND METHODS 15 Expression of SARS-CoV 3CL protease in Escherichia coli and its purification 15 Measurement of SARS-CoV 3CL protease activity using HPLC 16 Measurement of SARS-CoV 3CL protease activity using FRET 17 Preparation of test compounds 18 Determination of kinetic parameters and the Ki of effective compounds using the FRET peptide 18 Measurement of the activity of HIV protease 19 Measurement of the activities of multiple proteases by protease panel 19 Hexachlorophene docking and data analysis 20 RESULTS 22 SARS-CoV 3CL protease preparation and activity 22 Establishment of the FRET-based high-throughput assay for SARS-CoV 3CL protease 22 Determination of the Km of SARS-CoV 3CL protease using the FRET peptide 23 Hexachlorophene, triclosan, and nelfinavir inhibit 3CL protease 24 Hexachlorophene is a competitive inhibitor, and inhibition depends on the preincubation time 24 Hexachlorophene is an inhibitor of several proteases 25 Inhibition of HIV protease by hexachlorophene 25 Molecular docking of hexachlorophene 26 Hexachlorophene-like compounds show the anti-SARS CoV 3CL protease activity 27 DISCUSSION 29 Chapter III- Identification of a novel competitive inhibitor of p38α MAPK by a human PBMC screen 42 SUMMARY 43 INTRODUCTION 44 MATERIALS AND METHODS 46 Cell-based assay of LPS-induced cytokine release inhibition 46 Kinase inhibition assays 47 Kinetic study of MT4 for p38α MAPK 47 Western blot analysis 48 MT4 docking and data analysis 49 Cell-based assays with human platelets (COX-1) and PBMC (COX-2) 50 Cyclooxygenase-2 activity inhibition assay 50 Human PBMC 5-lipoxygenase inhibition assay 51 Human platelet 12-lipoxygenase activity inhibition assay 51 15-lipoxygenase activity inhibition assay 51 RESULTS 52 Inhibitory effect of MT4 on PBMC cytokine production 52 Effect of MT4 on the MAPK pathway in LPS-stimulated PBMC 53 MT4 is a competitive inhibitor with ATP on p38α MAPK 54 The effect of MT4 on phosphorylated CREB levels in PBMC 55 Molecular Docking of MT4 55 Effect of MT4 on arachidonic acid pathway 56 DISCUSSION 58 CHAPTER IV- Conclusion and Perspectives 71 REFERENCES 73 APPENDIX 83 | |
| dc.language.iso | en | |
| dc.subject | 介白質1β | zh_TW |
| dc.subject | 3CL蛋白分解酵素 | zh_TW |
| dc.subject | 非典型肺炎冠狀病毒 | zh_TW |
| dc.subject | 藥物篩選 | zh_TW |
| dc.subject | 腫瘤壞死因子α | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | IL-1β | en |
| dc.subject | drug screening | en |
| dc.subject | SARS | en |
| dc.subject | 3CL protease | en |
| dc.subject | inflammation | en |
| dc.subject | TNF-α | en |
| dc.title | 建立抗 SARS 和抗發炎作用之藥物篩選系統 | zh_TW |
| dc.title | Establishment of the Drug Screening Systems for Evaluating Chemical Compounds Possessing Anti-SARS or Anti-inflammation Properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇崧南,蕭傳鐙,賴義隆,林君榮 | |
| dc.subject.keyword | 藥物篩選,非典型肺炎冠狀病毒,3CL蛋白分解酵素,發炎,腫瘤壞死因子α,介白質1β, | zh_TW |
| dc.subject.keyword | drug screening,SARS,3CL protease,inflammation,TNF-α,IL-1β, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-04-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
