請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25401
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖秀娟(Vivian Hsiu-Chuan Liao) | |
dc.contributor.author | Hsiang-Yen Hsu | en |
dc.contributor.author | 許翔雁 | zh_TW |
dc.date.accessioned | 2021-06-08T06:11:58Z | - |
dc.date.copyright | 2007-07-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-02 | |
dc.identifier.citation | 1. Abernathy, C. O., Y. P. Liu, D. Longfellow, H. V. Aposhian, B. Beck, B. Fowler, R. Goyer, R. Menzer, T. Rossman, C. Thompson, and M. Waalkes. 1999. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593-7.
2. Adams, A. 1973. Transposition of the arsenate resistance locus of Bacillus subtilis strains 23 and 168. Genetics 74:197-213. 3. Anderson, C. R., and G. M. Cook. 2004. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341-7. 4. Anderson, G. L., J. Williams, and R. Hille. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674-82. 5. Chen, C. J., Y. C. Chuang, S. L. You, T. M. Lin, and H. Y. Wu. 1986. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 53:399-405. 6. Das, S. K., and A. K. Mishra. 1996. Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithoheterotrophic bacterium. J Bacteriol 178:3628-33. 7. Das, S. K., A. K. Mishra, B. J. Tindall, F. A. Rainey, and E. Stackebrandt. 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981-7. 8. Dhar, R. K., Y. Zheng, J. Rubenstonec, and A. van Geenc. 2004. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal Chim Acta 526:203-209. 9. Diorio, C., J. Cai, J. Marmor, R. Shinder, and M. S. DuBow. 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050-6. 10. Ehrlich, H. L. 2002. Bacterial oxidation of As(III) compounds, p. 313-328. In J. William T Frankenberger (ed.), Environmental Chemistry of Arsenic. Marcel Dekker, Inc, New York. 11. Ellis, P. J., T. Conrads, R. Hille, and P. Kuhn. 2001. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9:125-32. 12. Gihring, T. M., and J. F. Banfield. 2001. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335-40. 13. Gihring, T. M., G. K. Druschel, R. B. McCleskey, R. J. Hamers, and J. F. Banfield. 2001. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857-62. 14. Green, H. H. 1918. Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S Afr J Sci 14:465-467. 15. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98. 16. Ilialetdinov, A. N., and S. A. Abdrashitova. 1981. Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia 50:197-204. 17. Jones, C. A., H. W. Langner, K. Anderson, T. R. McDermott, and I. W. P. 2000. Rates of microbially mediated arsenate reduction and solublilization. Soil Sci Soc Am J 64:600-608. 18. Kashyap, D. R., L. M. Botero, W. L. Franck, D. J. Hassett, and T. R. McDermott. 2006. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081-8. 19. Katsoyiannis, I. A., and A. I. Zouboulis. 2004. Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17-26. 20. Krafft, T., and J. M. Macy. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647-53. 21. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244-5. 22. La Scola, B., M. N. Mallet, P. A. Grimont, and D. Raoult. 2003. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 53:15-20. 23. Lebrun, E., M. Brugna, F. Baymann, D. Muller, D. Lievremont, M. C. Lett, and W. Nitschke. 2003. Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686-93. 24. Macur, R. E., J. T. Wheeler, T. R. McDermott, and W. P. Inskeep. 2001. Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676-82. 25. Malasarn, D., C. W. Saltikov, K. M. Campbell, J. M. Santini, J. G. Hering, and D. K. Newman. 2004. arrA is a reliable marker for As(V) respiration. Science 306:455. 26. Mateos, L. M., E. Ordonez, M. Letek, and J. A. Gil. 2006. Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207-15. 27. Mukhopadhyay, R., B. P. Rosen, L. T. Phung, and S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311-25. 28. Muller, D., D. Lievremont, D. D. Simeonova, J. C. Hubert, and M. C. Lett. 2003. Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135-41. 29. Niggemyer, A., S. Spring, E. Stackebrandt, and R. F. Rosenzweig. 2001. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568-80. 30. Nriagu, J. O. 2002. Arsenic poisoning through the ages, p. 1-26. In J. William T Frankenberger (ed.), Environmental chemistry of arsenic. Marcel Dekker, Inc, New York. 31. Oremland, R. S., S. E. Hoeft, J. M. Santini, N. Bano, R. A. Hollibaugh, and J. T. Hollibaugh. 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795-802. 32. Oremland, R. S., and J. F. Stolz. 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45-9. 33. Oremland, R. S., and J. F. Stolz. 2003. The ecology of arsenic. Science 300:939-44. 34. Owolabi, J. B., and B. P. Rosen. 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 172:2367-71. 35. Philips, S. E., and M. L. Taylor. 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32:392-9. 36. Rahman, M., M. Tondel, S. A. Ahmad, I. A. Chowdhury, M. H. Faruquee, and O. Axelson. 1999. Hypertension and arsenic exposure in Bangladesh. Hypertension 33:74-8. 37. Rhine, E. D., E. Garcia-Dominguez, C. D. Phelps, and L. Y. Young. 2005. Environmental microbes can speciate and cycle arsenic. Environ Sci Technol 39:9569-73. 38. Rhine, E. D., S. M. Ni Chadhain, G. J. Zylstra, and L. Y. Young. 2007. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun 354:662-7. 39. Rhine, E. D., C. D. Phelps, and L. Y. Young. 2006. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899-908. 40. Rose, T. M., J. G. Henikoff, and S. Henikoff. 2003. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763-6. 41. Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol 7:207-12. 42. Rosenberg, H., R. G. Gerdes, and K. Chegwidden. 1977. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505-11. 43. Saltikov, C. W., A. Cifuentes, K. Venkateswaran, and D. K. Newman. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800-9. 44. Saltikov, C. W., and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100:10983-8. 45. Saltikov, C. W., R. A. Wildman, Jr., and D. K. Newman. 2005. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J Bacteriol 187:7390-6. 46. Santini, J. M., L. I. Sly, R. D. Schnagl, and J. M. Macy. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92-7. 47. Santini, J. M., and R. N. vanden Hoven. 2004. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614-9. 48. Silver, S., and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599-608. 49. Silver, S., P. L. T., and R. B. P. 2002. Arsenic metabolism: resistance, reduction and oxidation, p. 247–272. In J. William T Frankenberger (ed.), Environmental chemistry of arsenic. Marcel Dekker, Inc, New York. 50. Simeonova, D. D., D. Lievremont, F. Lagarde, D. A. Muller, V. I. Groudeva, and M. C. Lett. 2004. Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 237:249-53. 51. Smith, A. H., C. Hopenhayn-Rich, M. N. Bates, H. M. Goeden, I. Hertz-Picciotto, H. M. Duggan, R. Wood, M. J. Kosnett, and M. T. Smith. 1992. Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259-67. 52. Tchounwou, P. B., B. Wilson, and A. Ishaque. 1999. Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Rev Environ Health 14:211-29. 53. Tseng, W. P. 1977. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19:109-19. 54. vanden Hoven, R. N., and J. M. Santini. 2004. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148-55. 55. Wackett, L. P., A. G. Dodge, and L. B. Ellis. 2004. Microbial genomics and the periodic table. Appl Environ Microbiol 70:647-55. 56. Weeger, W., D. Lievremont, M. Perret, F. Lagarde, J. C. Hubert, M. Leroy, and M. C. Lett. 1999. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141-9. 57. Willsky, G. R., and M. H. Malamy. 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356-65. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25401 | - |
dc.description.abstract | 砷為已知的人類致癌物質。雖然砷對大多數的生物體具有毒性,但已有證據顯示微生物能夠調控砷在環境中的轉化、循環與分佈。本研究旨在探討台灣烏腳病地區受砷汗染之地下水中微生物的分離及調控砷循環的機制。本研究一共分離出345株和砷的抗性相關的菌株,根據16S rDNA的次序鑑定比對判定其環境水樣中的優勢菌種為Pseudomonas屬。於好氧的培養條件下,利用microplate color screening方法篩選出其中87菌株對五價砷具有還原功能以及一菌株對三價砷具有氧化功能。本研究更進一步對三價砷氧化菌,Bosea sp. str. L7506,進行更深入的探討與研究。
結果顯示Bosea sp. str. L7506為一革蘭氏陰性桿菌 (Gram-negative),最適的生長條件為pH值7.4-8.4,37℃於LB (Luria-Bertani) 培養基中培養。其對砷的抗性極高,能存活於含有100mM的五價砷環境中。Bosea sp. str. L7506為一好氧自營菌,但在適當的培養基質及碳源的供應下能刺激其生長,甚至能抵抗2mM三價砷的毒性。另外,結果顯示Bosea sp. str. L7506在完全不提供營養源的狀況下,仍能在三天之內就將2mM的三價砷完全氧化成五價砷,而且若於原生環境地下水樣中培養,則可在二天之內完全氧化2mM的三價砷,此結果在未來環境復育的利用上佔有相當大的優勢。此外,本研究亦clone出三價砷氧化酶 (arsenite oxidase) 之large subunit,並在菌體的periplasm 及spheroplast內皆發現受三價砷誘導之三價砷氧化酶活性。本研究除了發現在台灣烏腳病地區受砷汗染之地下水中菌種的分布,並且對三價砷之氧化菌Bosea sp. str. L7506做進一步的研究與分析,期能應用於未來復育環境中的砷汙染。 | zh_TW |
dc.description.abstract | Arsenic is an environmental carcinogen of toxicological concern. Although arsenic is generally toxic to life, it has been demonstrated that some microorganisms can use arsenic compounds as electron donors, electron acceptors, or possess arsenic detoxification mechanisms. Increasing evidences suggest that the biogeochemical cycle of arsenic is significantly dependent on microbial transformations which affect the distribution and the mobility of arsenic species in the environment. However, the roles of the bacteria in the arsenic cycles are yet to be fully elucidated. In this study, we isolate arsenite-arsenate redox bacteria using known arsenic-contaminated groundwater in Blackfoot disease region in Taiwan under oxic condition. Three hundred and forty-five arsenic-resistant bacterial strains were isolated. A microplate color screening assay with addition of AgNO3 was used to initially characterize the ability of oxidation and reduction of those bacteria. Eighty-seven bacteria were capable of arsenate reduction, whereas only one bacterial strain L7506 was characterized as arsenite oxidizer. Analysis of the 16S rRNA gene sequence of the isolated bacteria revealed that some of the bacteria have been indicated involving in arsenic transformation, while others have not been reported to be associated with arsenic transformation. The designated strain L7506 was selected for further investigation. It is a Gram-negative, straight to curved rod, and motile bacteria. It belongs to genus Bosea based on 16S rRNA sequence analysis. The optimal growth condition was at pH 7.4-8.4, 37℃ in LB medium. Moreover, it was able to grow in the presence of 100mM arsenate. Substrate test showed that Bosea sp. str. L7506 is an autotrophic bacterium. However, the addition of appropriate substrate and carbon sources enhance its growth rate even in the presence of 2mM arsenite. Arsenite transformation analysis showed that Bosea sp. str. L7506 completely oxidized 2mM (150ppm) of arsenite to arsenate within 3 days without the presence of any nutrient, and within 2 days when cultured in groundwater samples. Furthermore, the large subunit of the arsenite oxidase gene was cloned using a pair of degenerate primers. Arsenite oxidase activity was stimulated by 2mM arsenite and was present in both periplasm and spheroplast of the bacteria. Taken together, results from this study showed that diverse bacteria were present in arsenic-contaminated groundwater in Blackfoot disease region in Taiwan. The identified arsenite-oxidizing bacteria may be potentially used for bioremediation of arsenic-contaminated groundwater. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:11:58Z (GMT). No. of bitstreams: 1 ntu-96-R94622018-1.pdf: 1351741 bytes, checksum: e29086514e9b40b41c1189dfa49d9cee (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III ABSTRACT IV TABLE OF CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Arsenic 1 1.2 Environmental impacts of microbial arsenic transformation 2 1.3 Arsenic microbial mechanisms 3 1.3.1 Arsenic resistance and detoxification microorganisms 6 1.3.2 Arsenite-oxidizing microbes 7 1.3.3 Dissimilatory arsenate-reducing prokaryotes 8 1.4 High arsenic content of groundwater in Taiwan 11 1.5 Purpose of study 11 CHAPTER 2 MATERIALS & METHODS 16 2.1 Chemicals 16 2.2 Growth conditions and medium composition 16 2.3 Arsenic-resistant bacterial strains isolation procedures 16 2.4 Microplate Color screening assay 19 2.5 Toxicity test for bacterial strains 21 2.6 PCR amplification of 16S rRNA genes and ArsR gene 21 2.7 Substrate tested for growth of Bosea sp. str. L7506 23 2.8 Arsenite transformation for Bosea sp. str. L7506 24 2.9 Cloning of arsenite oxidase gene 24 2.10 Arsenite oxidase activity assay 25 2.11 Analytical methods 26 2.12 Phylogenetic analysis 27 CHAPTER 3 RESULTS 28 3.1 Isolation of arsenic-resistant bacterial strains 28 3.1.1 Isolation of arsenic-resistant bacterial strains from arsenic- contaminated groundwaters 28 3.1.2 Characterization of arsenite-oxidation and arsenate-reduction bacterial strains 28 3.1.3 Sequence analysis of bacterial isolates 29 3.2 Characterization of the arsenite oxidizer, Bosea sp. str. L7506 34 3.2.1 General description of Bosea sp. str. L7506 34 3.2.2 Sequence analysis of Bosea sp. str. L7506 34 3.2.3 Substrate test for growth of Bosea sp. str. L7506 36 3.2.4 Growth curve of Bosea sp. str. L7506 39 3.2.5 Toxicity test for Bosea sp. str. L7506 41 3.2.6 Arsenite transformation for Bosea sp. str. L7506 41 3.2.7 Cloning and phylogenetic analysis of arsenite oxidase gene from Bosea sp. str. L7506 43 3.4.8 Arsenite-oxidase gene expression analysis of Bosea sp. str. L7506 by arsenite 50 CHAPTER 4 DISCUSSION 52 CHAPTER 5 CONCLUSION 58 REFERENCES 60 LIST OF TABLES Table 1.1 Summaries of arsenic-related microbes 5 Table 2.1 The composition of media used 17 Table 3.1 Summary of isolated Bacterial strains 31 Table 3.2 Carbon sources and other substrates utilization for Bosea sp. str. L7506 38 Table 3.3 Arsenite-oxidase protein activity of Bosea sp. str. L7506 51 LIST OF FIGURES Figure 1.1 Environmental impacts of microbial arsenic transformations 4 Figure 1.2 Structure of Arsenite oxidase AsoAB 9 Figure 1.3 Mechanisms present in prokaryotes to arsenic oxyanions 12 Figure 1.4 Area with high arsenic content of groundwater in Taiwan 13 Figure 2.1 The flowchart of arsenic-resistant bacterial strains isolation 20 Figure 3.1 Microplate color screening assay 30 Figure 3.2 Full-length 16S rDNA sequences of Bosea sp. str. L7506 35 Figure 3.3 Phylogenetic relationships of Bosea sp. str. L7506 among closely related species of Proteobacteria based on phylogenetic analysis of its 16S rRNA gene sequence 37 Figure 3.4 Growth curve of Bosea sp. str. L7506 40 Figure 3.5 Toxicity tests of different concentrations of arsenite, arsenate, and antimonite for Bosea sp. str. L7506 42 Figure 3.6 Arsenic concentrations, pH value, and OD600 of arsenite oxidation to arsenate with O2 as electron accepter by Bosea sp. str. L7506 44 Figure 3.7 Arsenic concentrations of arsenite oxidation to arsenate with O2 as electron accepter by Bosea sp. str. L7506 45 Figure 3.8 ClustalW alignment of Bosea sp. str. L7506 with the published arsenite oxidase amino acid sequences 47 Figure 3.9 Phylogenetic distribution of derived amino acid sequences from trimmed arsenite oxidase PCR products 48 | |
dc.language.iso | en | |
dc.title | 台灣烏腳病地區含砷地下水菌種Bosea sp. str. L7506的分離與分析 | zh_TW |
dc.title | Isolation and Characterization of arsenite-oxidizing bacteria Bosea sp. str. L7506 from Arsenic-contaminated Groundwater in Blackfoot Disease Region in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉振宇(Chen-Wuing Liu),李心予(Hsin-Yu Lee),沈偉強(Wei-Chiang Shen) | |
dc.subject.keyword | 砷,微生物,地下水,三價砷氧化菌,Bosea. sp. str. L7506,復育, | zh_TW |
dc.subject.keyword | arsenite-oxidation,groundwater,bioremediation,bacteria,Bosea. sp. str. L7506, | en |
dc.relation.page | 64 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-03 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。