請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2539
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林志民(Jim Jr-Min Lin) | |
dc.contributor.author | Wen Chao | en |
dc.contributor.author | 趙彣 | zh_TW |
dc.date.accessioned | 2021-05-13T06:41:42Z | - |
dc.date.available | 2017-07-20 | |
dc.date.available | 2021-05-13T06:41:42Z | - |
dc.date.copyright | 2017-07-20 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-06-12 | |
dc.identifier.citation | 1 A. M. Thompson, Science, 1992, 256,1157-1165.
2 J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fisher, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams, Nature, 2008, 452, 737-740. 3 D. Johnson, and G. Marton, Chem. Soc. Rev., 2008, 37, 699-716. 4 R.M. Harrison, J. Yin, R.M. Tilling, X. Cai, P.W. Seakins, J.R. Hopkins, D.L. Lansley, A.C. Lewis, M.C. Hunter, D.E. Heard, L.J. Carpenter, D.J. Creasey, J.D. Lee, M.J. Pilling, N. Carslaw, K.M. Emmerson, A. Redington, R.G. Derwent, D. Ryall, G. Mills, S.A. Penkett, Sci. Total. Environ., 2006, 360, 5-25. 5 T. W. G. Solomons, C. B. Fryhle, Organic Chemistry 10th, John Wiley & Sons, INC, Hoboken, 2011, 8, 366-368. 6 M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod, and S. Andersson, J. Phys. Chem. A, 1997, 101, 9421-9429. 7 R. Criegee and G. Wenner, Liebigs Ann. Chem., 1949, 564, 9-15. 8 R. Criegee, Angew. Chem., Int. Ed., 1975, 14, 745–752. 9 L. Vereecken, D. R. Glowacki, and M. J. Pilling, Chem. Rev., 2015,115, 4063-4114. 10 H. Akimoto, Atmospheric Reaction Chemistry, Springer, Tokyo, 2016, 7, 299-300, DOI: 10.1007/978-4-431-55870-5. 11 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos, Chem. Phys., 2006, 6, 3625-4055. 12 J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A, 2001, 105, 1554-1560. 13 J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A, 2001, 105, 4446-4457. 14 R. L. Mauldin, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen1and M. Kulmala1, Nature, 2012, 488, 193-197. 15 Craig A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc., 2008, 130, 11883-11885. 16 O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science, 2012, 335, 204. 17 W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, J. J.-M. Lin, J. Chem. Phys., 2014, 141, 104308. 18 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science, 2013, 340, 177. 19 R. Chhantyal-Pun, O. Welz, J. D. Savee, A. J. Eskola, E. P. E. Lee, L. Blacker, H. R. Hill, M. Aschcroft, M. A. H. Khan, G. C. Lloyd-Jones, L. Evans, B. Rotavera, H. Huang, D. L. Osborn, D. K. W. Mok, J. M. Dyke, D. E. Shallcross, C. J. Percival, A. J. Orr-Ewing, and C. A. Taatjes, J. Phys. Chem. A, 2017,121, 4-15. 20 L. Sheps, J. Phys. Chem. Lett., 2013, 4, 4201. 21 L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701-26706. 22 W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2014, 16, 10438. 23 M. C. Smith, W.-L. Ting, C.-H. Chang, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 074302. 24 Y.-P. Chang, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Chem. Phys. Lett., 2016, 653, 155-160. 25 J. M. Beams, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc., 2012, 134, 20045. 26 J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys., 2013, 138, 244307. 27 F. Liu, J. M. Beams, A. M. Green, M. I. Lester, J. Phys. Chem. A, 2014, 118, 2298-2306. 28 M. F. Vansco, H. Li, and M. I. Lester, J. Chem. Phys., 2017, 147, 013907. 29 Y.-T. Su,Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science, 2013, 340, 174. 30 Y.-H. Huang, J. Li, H. Guo, and Y.-P. Lee, J. Chem. Phys., 2015, 142, 214301. 31 H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun., 2015, 6, 7012. 32 Y.-Y. Wang, C.-Y- Chung, and Y.-P. Lee, J. Chem. Phys., 2016, 145, 154303. 33 F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science, 2014, 345, 1596. 34 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 144, 061102. 35 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 145, 234308. 36 Y. Fang, F. Liu, S. J. Klippenstein, and M. I. Lester, J. Chem. Phys., 2016, 145, 044312. 37 Y. Fang, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2017, 146, 134307. 38 M. Nakajima and Y. Endo, J. Chem. Phys., 2013, 139, 101103. 39 M. Nakajima and Y. Endo, J. Chem. Phys., 2014, 140, 011101. 40 M. Nakajima, Q. Yue, and Y. Endo, J. Mol. Spectrosc., 2015, 310, 109. 41 M. Nakajima, and Y. Endo, J. Chem. Phys., 2016, 145, 244307. 42 M. C. Smith, W. Chao, K. Takahashi, K. A. Boering, and J. J. Lin, J. Phys. Chem. A, 2016,120, 4789–4798. 43 R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percivalb and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2015, 17, 3617-3626. 44 W. Chao, J.-T. Hsieh, C.-H. Chang, and J. J.-M. Lin, Science, 2015, 347, 751-754. 45 M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708-2713. 46 L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J.-M. Lin, and K. Takahashi, Phys. Chem. Chem. Phys., 2016, 18, 4557-4568. 47 L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2016, 18, 28189-28197. 48 H.-L. Huang, W. Chao, and J. J.-M. Lin, PNAS, 2015,112, 10857-10862. 49 T. R. Lewis, M. A. Blitz, D. E. Heard, and P. W. Seakins, Phys. Chem. Chem. Phys., 2014, 17, 4859-4863. 50 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok,and D. E. Shallcrossd and C. J. Percival, Phys. Chem. Chem. Phys., 2012, 14, 10391–10400. 51 O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550. 52 E. S. Foreman, K. M. Kapnas, and C. Murray, Angew. Chem. Int. Ed., 2016, 55, 10419-10422. 53 Z.J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A, 2014,118, 1997-2006. 54 Z. C. J. Decker, K. Au, L. Vereecken, and L. Sheps, Phys. Chem. Chem. Phys., 2017, 19, 8541-8551. 55 Z. J. Buras, R. M. I. Elsamra, and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224−2228 56 K. T. Kuwata, L. C. Valin, and A. D. Converse, J. Phys. Chem. A, 2005, 109, 10710-10725. 57 J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A, 2000, 104, 9921-9932 58 NIST Chemical Kinetics Database, http://kinetics.nist.gov, (accessed May 2017). 59 N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857. 60 J. Li, Q. Ying, B. Yi, P. Yang, Atmos. Environ., 2013, 79, 442-447. 61 C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45. 62 B. Ruscic, J. Phys. Chem. A, 2013, 117, 11940-11953. 63 A. Pross, S. Sternhell, Aust. J. Chem., 1970, 23(5), 989-1003. 64 The MPI-Mainz UV/Vis Spectral Atlas of Gaseous Molecules of Atmospheric Interest, http://satellite.mpic.de/spectral_atlas, (accessed May 2017) 65 S. Aloisio, and J. S. Francisco, Acc. Chem. Res., 2000, 33, 825-830. 66 E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel1, Science, 2007, 315 (5811), 497-501 67 R. Atskinson, A. C. Lloyd, J. Phys. Chem. Ref. Data, 1984, 13, 315-444. 68 P. Neeb, F. Sauer, O. Horie,and G. K. Moortgat, Atmos. Environ., 1997, 31(10), 1417-1423. 69 A. S. Hasson, G. Orzechowska, and S. E. Paulson, J. Geophys. Res.,2001, 106, 34131-34142. 70 E. G. Jean, and D. Grosjean, Environ. Sci. Technol. 1996, 30, 2036-2044. 71 A. R. Rickard, D. Johnson, C. D. McGill, and G. Marston, J. Phys. Chem. A, 1999, 103, 7656-7664. 72 K. H. Becker, J. Bechara, K. J. Brockmann, Atmos. Environ., 1993, 27A, 1993, 57-61. 73 M. Suto, E. R. Manzanares, L. C. Lee, Environ. Sci. Technol., 1985, 19, 815-820. 74 T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin, H. Herrmann, F. Stratmann, H. Junninen, M. and Kulmala, Atmos. Enviro., 2014, 89, 603-612. 75 T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin , M. Sipilä, M. Kulmala, H. Herrmann, Phys. Chem. Chem. Phys., 2014, 16, 19130-19136. 76 D. Stone, M. Blitz, L. Daubney, N. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys., 2014, 16, 1139-1149. 77 B. Ouyang, M. W. McLeod, R. L. Jones, and W. J. Bloss, Phys. Chem. Chem. Phys., 2013, 15, 17070-17075. 78 A. B. Ryzhkov, P. A. Ariya, Phys. Chem. Chem. Phys., 2004, 6, 5042-5050. 79 A. B. Ryzhkov, P. A. Ariya, Chem. Phys. Lett., 2006, 419, 479-485. 80 T. Berndt, R. Kaethner, J. Voigtlander, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipila, M. Kulmala, M. Olzmann, Phys. Chem. Chem. Phys., 2016, 17, 19862-19873. 81 D. L. Osborn, C. A. Taatjes, Int. Rev. Phys. Chem., 2015, 34, 309-360 82 M. Nakajima, and Y. Endo, J. Chem. Phys., 2014, 140, 134302. 83 E. R. Lovejoy, D. R. Hanson, and L. G. Huey, J. Phys. Chem., 1996, 100, 19911-19916. 84 T. Loerting, and K. R. Kiedl, PNAS, 2000, 97, 8874-8878 85 M. Kumar, A. Sinha, and J. S. Francisco, Acc. Chem. Res., 2016, 49, 877-883. 86 C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco, and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169. 87 M. Nakajima, and Y. Endo, J. Chem. Phys., 2015, 143, 164307. 88 R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem. Eur. J., 2001, 7(10), 2227-2235. 89 R. L. Caravan, M. A. H. Khan, B. Rotavera, E. Papajak, I. O. Antonov, M.-W. Chen, K. Au, W. Chao, D. L. Osborn, J. J.-M. Lin, C. J. Percival, D. E. Shallcross, C. A. Taatjesa, Faraday Discuss., 2017, submitted. 90 L.-C. Lin, K. Takahashi, J. Chin. Chem. Soc., 2016, 63, 472-479. 91 T. Hoffmann, J. R. Odum, F. Bpwman, D. Collins, D. Klockow, R. C. Flagan and J. H. Seinfeld,J. Atmos. Chem., 1997, 26, 189–222. 92 N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857. 93 G. T. Drozd, J. Kroll, and N. M. Donahue, J. Phys. Chem. A 2011, 115, 161–166. 94 K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A, 2010, 114, 9192. 95 C. Yin, and K. Takahash, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/c7cp01091e. 96 J. J.-M. Lin, W. Chao. Chem. Soc. Rev., 2017, submitted. 97 T. Kurtén, and N. M. Donahue, J. Phys. Chem. A, 2012, 116, 6823−6830. 98 C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field and M. C. McCarthy, Sci. Adv., 2015, 1, e1400105. 99 L. Vereecken, H. Harder and A. Novelli, Phys. Chem. Chem. Phys., 2014, 16, 4039-4049. 100 T.J. Blasing, Technical Report. US Carbon Dioxide Information Analysis Center, Oak Ridge, TN., 2011., DOI: 10.3334/CDIAC/atg.032. 101 H. G. Kjaergaard, T. Kurtén, L. B. Nielsen, S. Jørgensen, and P. O. Wennberg, J. Phys. Chem. Lett., 2013, 4, 2525-2529. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2539 | - |
dc.description.abstract | 臭氧化反應是消耗大氣中不飽和碳氫化合物的主要反應之一。克里奇中間體 (羰基氧化物) 會在臭氧化反應中生成,進一步可能產生氫氧自由基或與大氣中其它分子反應。我們團隊利用克里奇中間體在紫外光波段的強烈吸收,對最簡單的克里奇中間體CH2OO和二甲基取代克里奇中間體 (CH3)2COO做動力學探討;包含(CH3)2COO的單分子分解反應和兩者對水蒸氣、C2H4和(CH3)2C=C(CH3)2的雙分子反應。我們控制反應管中的溼度並發現CH2OO的衰減速率對[H2O]呈平方關係,指出與水二聚體之反應為主要發生的過程(k(H2O)2 = (7.4±0.6)x1012 cm3s1),但(CH3)2COO與水蒸氣的反應慢到無法測量(kH2O < 1.5x1016 cm3s1)。另一方面,由於氫原子的穿隧效應,(CH3)2COO在一般的大氣條件下會進行分子內氫原子轉移而分解。我們測量並分析可能的副反應的反應物濃度效應並決定(CH3)2COO在298K的熱分解速率為kth,H(298K) = (361±49) s1。此穿隧效應也藉由對(CD3)2COO做相同的測量與分析而確認(kth,D(298K) < 100 s1)。我們也探討了克里奇中間體與烯類分子[C2H4、(CH3)2C=C(CH3)2]之間的反應行為。CH2OO和C2H4 的反應速率係數被測量為(6.8±0.7)x1016 cm3s1,且在50 760 Torr 之間沒有壓力效應。另外(CH3)2COO的衰減速率對C2H4的濃度呈現一奇特的現象,當C2H4的濃度大於1x1016 cm3時,(CH3)2COO的衰減速率會上升至一定值。我們目前還無法解釋這個現象。 | zh_TW |
dc.description.abstract | Ozonolysis reaction is one of the main removal channels of unsaturated hydrocarbons in the atmosphere. Carbonyl oxide, also known as Criegee intermediate, is produced in ozonolysis reaction and thought to play a role in OH radical formation and react with atmospheric gases. Our group have probed CH2OO and (CH3)2COO by utilizing their strong UV absorption. The unimolecular decomposition of (CH3)2COO and their bimolecular reactions with water vapor, C2H4 and (CH3)2C=C(CH3)2 have been studied. We controlled the humidity in the reactor and found that the observed decay rate of CH2OO showed a quadratic dependence on [H2O], and thus assigned water dimer reaction to be the main pathway in the CH2OO decay, k(H2O)2 = (7.4±0.6)x1012 cm3s1, while (CH3)2COO reaction with water vapor was too slow to measure (kH2O < 1.5x1016 cm3s1). On the other hand, (CH3)2COO will isomerize and decompose under ambient conditions via fast tunneling of hydrogen atom. We measured and analyzed the concentration dependences for the reactants of possible side reactions to extract the thermal decomposition rate coefficients of (CH3)2COO to be (361±49) s1 at 298 K. The tunneling mechanism was confirmed by the small decomposition rate of (CD3)2COO, kth(298K)< 100 s1. For the reactions of Criegee intermediates with alkenes, the rate coefficient of CH2OO + C2H4 has been measured to be (6.8±0.7)x1016 cm3s1 with negligible pressure dependence (50 760 Torr). Furthermore, a strange kinetic behavior was observed in the decay rate of (CH3)2COO when adding C2H4; the (CH3)2COO decay rate increases to a saturation level for [C2H4] ≥ 1x1016 cm3. We have no good explanation for this observation yet. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:41:42Z (GMT). No. of bitstreams: 1 ntu-106-R04223170-1.pdf: 1787656 bytes, checksum: b4da3402192fc6d2c5b9a32ffd376335 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii Chapter 1 Introduction 1 Chapter 2 Experimental Section 8 2.1 Optical Setup 9 2.2 Baseline Stability 13 2.3 Water Vapor in the Reactor 15 2.4 Precursor in the Reactor 17 2.5 Synthesis of 2,2-diiodopropane 18 2.6 Photolysis system of CH2I2 and (CH3)2CI2 21 Chapter 3 Reaction with Water Vapor 24 Chapter 4 Unimolecular Decomposition 38 Chapter 5 Reaction with Small Alkenes 51 Chapter 6 Future Outlooks 57 Summary 59 Reference 61 | |
dc.language.iso | en | |
dc.title | 以紫外光吸收光譜法測量小型克里奇中間體的反應動力學 | zh_TW |
dc.title | Kinetic Studies of Small Criegee Intermediates by UV Absorption Spectroscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉國平,李遠鵬,鄭原忠 | |
dc.subject.keyword | 氣態反應動力學,臭氧化反應,紫外光吸收光譜,克里奇中間體 (羰基氧化物),反應性的結構效應,單分子分解反應, | zh_TW |
dc.subject.keyword | gas phase reaction kinetics,ozonolysis reaction,UV absorption spectroscopy,Criegee intermediate (carbonyl oxide),structure effect in reactivity,unimolecular decomposition, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201700930 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-06-13 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 1.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。