Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林志民(Jim Jr-Min Lin)
dc.contributor.authorWen Chaoen
dc.contributor.author趙彣zh_TW
dc.date.accessioned2021-05-13T06:41:42Z-
dc.date.available2017-07-20
dc.date.available2021-05-13T06:41:42Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-12
dc.identifier.citation1 A. M. Thompson, Science, 1992, 256,1157-1165.
2 J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fisher, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams, Nature, 2008, 452, 737-740.
3 D. Johnson, and G. Marton, Chem. Soc. Rev., 2008, 37, 699-716.
4 R.M. Harrison, J. Yin, R.M. Tilling, X. Cai, P.W. Seakins, J.R. Hopkins, D.L. Lansley, A.C. Lewis, M.C. Hunter, D.E. Heard, L.J. Carpenter, D.J. Creasey, J.D. Lee, M.J. Pilling, N. Carslaw, K.M. Emmerson, A. Redington, R.G. Derwent, D. Ryall, G. Mills, S.A. Penkett, Sci. Total. Environ., 2006, 360, 5-25.
5 T. W. G. Solomons, C. B. Fryhle, Organic Chemistry 10th, John Wiley & Sons, INC, Hoboken, 2011, 8, 366-368.
6 M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod, and S. Andersson, J. Phys. Chem. A, 1997, 101, 9421-9429.
7 R. Criegee and G. Wenner, Liebigs Ann. Chem., 1949, 564, 9-15.
8 R. Criegee, Angew. Chem., Int. Ed., 1975, 14, 745–752.
9 L. Vereecken, D. R. Glowacki, and M. J. Pilling, Chem. Rev., 2015,115, 4063-4114.
10 H. Akimoto, Atmospheric Reaction Chemistry, Springer, Tokyo, 2016, 7, 299-300, DOI: 10.1007/978-4-431-55870-5.
11 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos, Chem. Phys., 2006, 6, 3625-4055.
12 J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A, 2001, 105, 1554-1560.
13 J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A, 2001, 105, 4446-4457.
14 R. L. Mauldin, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen1and M. Kulmala1, Nature, 2012, 488, 193-197.
15 Craig A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc., 2008, 130, 11883-11885.
16 O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science, 2012, 335, 204.
17 W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, J. J.-M. Lin, J. Chem. Phys., 2014, 141, 104308.
18 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science, 2013, 340, 177.
19 R. Chhantyal-Pun, O. Welz, J. D. Savee, A. J. Eskola, E. P. E. Lee, L. Blacker, H. R. Hill, M. Aschcroft, M. A. H. Khan, G. C. Lloyd-Jones, L. Evans, B. Rotavera, H. Huang, D. L. Osborn, D. K. W. Mok, J. M. Dyke, D. E. Shallcross, C. J. Percival, A. J. Orr-Ewing, and C. A. Taatjes, J. Phys. Chem. A, 2017,121, 4-15.
20 L. Sheps, J. Phys. Chem. Lett., 2013, 4, 4201.
21 L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701-26706.
22 W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2014, 16, 10438.
23 M. C. Smith, W.-L. Ting, C.-H. Chang, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 074302.
24 Y.-P. Chang, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Chem. Phys. Lett., 2016, 653, 155-160.
25 J. M. Beams, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc., 2012, 134, 20045.
26 J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys., 2013, 138, 244307.
27 F. Liu, J. M. Beams, A. M. Green, M. I. Lester, J. Phys. Chem. A, 2014, 118, 2298-2306.
28 M. F. Vansco, H. Li, and M. I. Lester, J. Chem. Phys., 2017, 147, 013907.
29 Y.-T. Su,Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science, 2013, 340, 174.
30 Y.-H. Huang, J. Li, H. Guo, and Y.-P. Lee, J. Chem. Phys., 2015, 142, 214301.
31 H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun., 2015, 6, 7012.
32 Y.-Y. Wang, C.-Y- Chung, and Y.-P. Lee, J. Chem. Phys., 2016, 145, 154303.
33 F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science, 2014, 345, 1596.
34 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 144, 061102.
35 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 145, 234308.
36 Y. Fang, F. Liu, S. J. Klippenstein, and M. I. Lester, J. Chem. Phys., 2016, 145, 044312.
37 Y. Fang, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2017, 146, 134307.
38 M. Nakajima and Y. Endo, J. Chem. Phys., 2013, 139, 101103.
39 M. Nakajima and Y. Endo, J. Chem. Phys., 2014, 140, 011101.
40 M. Nakajima, Q. Yue, and Y. Endo, J. Mol. Spectrosc., 2015, 310, 109.
41 M. Nakajima, and Y. Endo, J. Chem. Phys., 2016, 145, 244307.
42 M. C. Smith, W. Chao, K. Takahashi, K. A. Boering, and J. J. Lin, J. Phys. Chem. A, 2016,120, 4789–4798.
43 R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percivalb and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2015, 17, 3617-3626.
44 W. Chao, J.-T. Hsieh, C.-H. Chang, and J. J.-M. Lin, Science, 2015, 347, 751-754.
45 M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708-2713.
46 L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J.-M. Lin, and K. Takahashi, Phys. Chem. Chem. Phys., 2016, 18, 4557-4568.
47 L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2016, 18, 28189-28197.
48 H.-L. Huang, W. Chao, and J. J.-M. Lin, PNAS, 2015,112, 10857-10862.
49 T. R. Lewis, M. A. Blitz, D. E. Heard, and P. W. Seakins, Phys. Chem. Chem. Phys., 2014, 17, 4859-4863.
50 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok,and D. E. Shallcrossd and C. J. Percival, Phys. Chem. Chem. Phys., 2012, 14, 10391–10400.
51 O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550.
52 E. S. Foreman, K. M. Kapnas, and C. Murray, Angew. Chem. Int. Ed., 2016, 55, 10419-10422.
53 Z.J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A, 2014,118, 1997-2006.
54 Z. C. J. Decker, K. Au, L. Vereecken, and L. Sheps, Phys. Chem. Chem. Phys., 2017, 19, 8541-8551.
55 Z. J. Buras, R. M. I. Elsamra, and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224−2228
56 K. T. Kuwata, L. C. Valin, and A. D. Converse, J. Phys. Chem. A, 2005, 109, 10710-10725.
57 J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A, 2000, 104, 9921-9932
58 NIST Chemical Kinetics Database, http://kinetics.nist.gov, (accessed May 2017).
59 N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857.
60 J. Li, Q. Ying, B. Yi, P. Yang, Atmos. Environ., 2013, 79, 442-447.
61 C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45.
62 B. Ruscic, J. Phys. Chem. A, 2013, 117, 11940-11953.
63 A. Pross, S. Sternhell, Aust. J. Chem., 1970, 23(5), 989-1003.
64 The MPI-Mainz UV/Vis Spectral Atlas of Gaseous Molecules of Atmospheric Interest, http://satellite.mpic.de/spectral_atlas, (accessed May 2017)
65 S. Aloisio, and J. S. Francisco, Acc. Chem. Res., 2000, 33, 825-830.
66 E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel1, Science, 2007, 315 (5811), 497-501
67 R. Atskinson, A. C. Lloyd, J. Phys. Chem. Ref. Data, 1984, 13, 315-444.
68 P. Neeb, F. Sauer, O. Horie,and G. K. Moortgat, Atmos. Environ., 1997, 31(10), 1417-1423.
69 A. S. Hasson, G. Orzechowska, and S. E. Paulson, J. Geophys. Res.,2001, 106, 34131-34142.
70 E. G. Jean, and D. Grosjean, Environ. Sci. Technol. 1996, 30, 2036-2044.
71 A. R. Rickard, D. Johnson, C. D. McGill, and G. Marston, J. Phys. Chem. A, 1999, 103, 7656-7664.
72 K. H. Becker, J. Bechara, K. J. Brockmann, Atmos. Environ., 1993, 27A, 1993, 57-61.
73 M. Suto, E. R. Manzanares, L. C. Lee, Environ. Sci. Technol., 1985, 19, 815-820.
74 T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin, H. Herrmann, F. Stratmann, H. Junninen, M. and Kulmala, Atmos. Enviro., 2014, 89, 603-612.
75 T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin , M. Sipilä, M. Kulmala, H. Herrmann, Phys. Chem. Chem. Phys., 2014, 16, 19130-19136.
76 D. Stone, M. Blitz, L. Daubney, N. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys., 2014, 16, 1139-1149.
77 B. Ouyang, M. W. McLeod, R. L. Jones, and W. J. Bloss, Phys. Chem. Chem. Phys., 2013, 15, 17070-17075.
78 A. B. Ryzhkov, P. A. Ariya, Phys. Chem. Chem. Phys., 2004, 6, 5042-5050.
79 A. B. Ryzhkov, P. A. Ariya, Chem. Phys. Lett., 2006, 419, 479-485.
80 T. Berndt, R. Kaethner, J. Voigtlander, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipila, M. Kulmala, M. Olzmann, Phys. Chem. Chem. Phys., 2016, 17, 19862-19873.
81 D. L. Osborn, C. A. Taatjes, Int. Rev. Phys. Chem., 2015, 34, 309-360
82 M. Nakajima, and Y. Endo, J. Chem. Phys., 2014, 140, 134302.
83 E. R. Lovejoy, D. R. Hanson, and L. G. Huey, J. Phys. Chem., 1996, 100, 19911-19916.
84 T. Loerting, and K. R. Kiedl, PNAS, 2000, 97, 8874-8878
85 M. Kumar, A. Sinha, and J. S. Francisco, Acc. Chem. Res., 2016, 49, 877-883.
86 C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco, and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.
87 M. Nakajima, and Y. Endo, J. Chem. Phys., 2015, 143, 164307.
88 R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem. Eur. J., 2001, 7(10), 2227-2235.
89 R. L. Caravan, M. A. H. Khan, B. Rotavera, E. Papajak, I. O. Antonov, M.-W. Chen, K. Au, W. Chao, D. L. Osborn, J. J.-M. Lin, C. J. Percival, D. E. Shallcross, C. A. Taatjesa, Faraday Discuss., 2017, submitted.
90 L.-C. Lin, K. Takahashi, J. Chin. Chem. Soc., 2016, 63, 472-479.
91 T. Hoffmann, J. R. Odum, F. Bpwman, D. Collins, D. Klockow, R. C. Flagan and J. H. Seinfeld,J. Atmos. Chem., 1997, 26, 189–222.
92 N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857.
93 G. T. Drozd, J. Kroll, and N. M. Donahue, J. Phys. Chem. A 2011, 115, 161–166.
94 K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A, 2010, 114, 9192.
95 C. Yin, and K. Takahash, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/c7cp01091e.
96 J. J.-M. Lin, W. Chao. Chem. Soc. Rev., 2017, submitted.
97 T. Kurtén, and N. M. Donahue, J. Phys. Chem. A, 2012, 116, 6823−6830.
98 C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field and M. C. McCarthy, Sci. Adv., 2015, 1, e1400105.
99 L. Vereecken, H. Harder and A. Novelli, Phys. Chem. Chem. Phys., 2014, 16, 4039-4049.
100 T.J. Blasing, Technical Report. US Carbon Dioxide Information Analysis Center, Oak Ridge, TN., 2011., DOI: 10.3334/CDIAC/atg.032.
101 H. G. Kjaergaard, T. Kurtén, L. B. Nielsen, S. Jørgensen, and P. O. Wennberg, J. Phys. Chem. Lett., 2013, 4, 2525-2529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2539-
dc.description.abstract臭氧化反應是消耗大氣中不飽和碳氫化合物的主要反應之一。克里奇中間體 (羰基氧化物) 會在臭氧化反應中生成,進一步可能產生氫氧自由基或與大氣中其它分子反應。我們團隊利用克里奇中間體在紫外光波段的強烈吸收,對最簡單的克里奇中間體CH2OO和二甲基取代克里奇中間體 (CH3)2COO做動力學探討;包含(CH3)2COO的單分子分解反應和兩者對水蒸氣、C2H4和(CH3)2C=C(CH3)2的雙分子反應。我們控制反應管中的溼度並發現CH2OO的衰減速率對[H2O]呈平方關係,指出與水二聚體之反應為主要發生的過程(k(H2O)2 = (7.4±0.6)x1012 cm3s1),但(CH3)2COO與水蒸氣的反應慢到無法測量(kH2O < 1.5x1016 cm3s1)。另一方面,由於氫原子的穿隧效應,(CH3)2COO在一般的大氣條件下會進行分子內氫原子轉移而分解。我們測量並分析可能的副反應的反應物濃度效應並決定(CH3)2COO在298K的熱分解速率為kth,H(298K) = (361±49) s1。此穿隧效應也藉由對(CD3)2COO做相同的測量與分析而確認(kth,D(298K) < 100 s1)。我們也探討了克里奇中間體與烯類分子[C2H4、(CH3)2C=C(CH3)2]之間的反應行為。CH2OO和C2H4 的反應速率係數被測量為(6.8±0.7)x1016 cm3s1,且在50  760 Torr 之間沒有壓力效應。另外(CH3)2COO的衰減速率對C2H4的濃度呈現一奇特的現象,當C2H4的濃度大於1x1016 cm3時,(CH3)2COO的衰減速率會上升至一定值。我們目前還無法解釋這個現象。zh_TW
dc.description.abstractOzonolysis reaction is one of the main removal channels of unsaturated hydrocarbons in the atmosphere. Carbonyl oxide, also known as Criegee intermediate, is produced in ozonolysis reaction and thought to play a role in OH radical formation and react with atmospheric gases. Our group have probed CH2OO and (CH3)2COO by utilizing their strong UV absorption. The unimolecular decomposition of (CH3)2COO and their bimolecular reactions with water vapor, C2H4 and (CH3)2C=C(CH3)2 have been studied. We controlled the humidity in the reactor and found that the observed decay rate of CH2OO showed a quadratic dependence on [H2O], and thus assigned water dimer reaction to be the main pathway in the CH2OO decay, k(H2O)2 = (7.4±0.6)x1012 cm3s1, while (CH3)2COO reaction with water vapor was too slow to measure (kH2O < 1.5x1016 cm3s1). On the other hand, (CH3)2COO will isomerize and decompose under ambient conditions via fast tunneling of hydrogen atom. We measured and analyzed the concentration dependences for the reactants of possible side reactions to extract the thermal decomposition rate coefficients of (CH3)2COO to be (361±49) s1 at 298 K. The tunneling mechanism was confirmed by the small decomposition rate of (CD3)2COO, kth(298K)< 100 s1. For the reactions of Criegee intermediates with alkenes, the rate coefficient of CH2OO + C2H4 has been measured to be (6.8±0.7)x1016 cm3s1 with negligible pressure dependence (50  760 Torr). Furthermore, a strange kinetic behavior was observed in the decay rate of (CH3)2COO when adding C2H4; the (CH3)2COO decay rate increases to a saturation level for [C2H4] ≥ 1x1016 cm3. We have no good explanation for this observation yet.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:42Z (GMT). No. of bitstreams: 1
ntu-106-R04223170-1.pdf: 1787656 bytes, checksum: b4da3402192fc6d2c5b9a32ffd376335 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 i
Abstract ii
Chapter 1 Introduction 1
Chapter 2 Experimental Section 8
2.1 Optical Setup 9
2.2 Baseline Stability 13
2.3 Water Vapor in the Reactor 15
2.4 Precursor in the Reactor 17
2.5 Synthesis of 2,2-diiodopropane 18
2.6 Photolysis system of CH2I2 and (CH3)2CI2 21
Chapter 3 Reaction with Water Vapor 24
Chapter 4 Unimolecular Decomposition 38
Chapter 5 Reaction with Small Alkenes 51
Chapter 6 Future Outlooks 57
Summary 59
Reference 61
dc.language.isoen
dc.title以紫外光吸收光譜法測量小型克里奇中間體的反應動力學zh_TW
dc.titleKinetic Studies of Small Criegee Intermediates by UV Absorption Spectroscopyen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉國平,李遠鵬,鄭原忠
dc.subject.keyword氣態反應動力學,臭氧化反應,紫外光吸收光譜,克里奇中間體 (羰基氧化物),反應性的結構效應,單分子分解反應,zh_TW
dc.subject.keywordgas phase reaction kinetics,ozonolysis reaction,UV absorption spectroscopy,Criegee intermediate (carbonyl oxide),structure effect in reactivity,unimolecular decomposition,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201700930
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-06-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved