請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25389完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孟子青(Tzu-Ching Meng) | |
| dc.contributor.author | Han Lee | en |
| dc.contributor.author | 李函 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:11:30Z | - |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-04 | |
| dc.identifier.citation | Agaisse H, Perrimon N (2004) The roles of JAK/STAT signaling in Drosophila immune responses. Immunol Rev 198: 72-82
Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5: 441-450 Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117: 699-711 Andersen JN, Del Vecchio RL, Kannan N, Gergel J, Neuwald AF, Tonks NK (2005) Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods 35: 90-114 Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21: 7117-7136 Aoki N, Matsuda T (2002) A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 16: 58-69 Arbouzova NI, Zeidler MP (2006) JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133: 2605-2616 Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19: 1861-1870 Berhanu P, Anderson C, Hickman M, Ciaraldi TP (1997) Insulin signal transduction by a mutant human insulin receptor lacking the NPEY sequence. Evidence for an alternate mitogenic signaling pathway that is independent of Shc phosphorylation. J Biol Chem 272: 22884-22890 Betz A, Lampen N, Martinek S, Young MW, Darnell JE, Jr. (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci U S A 98: 9563-9568 Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8: 300-312 Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97: 865-875 Bourdeau A, Dube N, Tremblay ML (2005) Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol 17: 203-209 Bromberg JF (2001) Activation of STAT proteins and growth control. Bioessays 23: 161-169 Brown S, Hu N, Hombria JC (2001) Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11: 1700-1705 Burgess JW, Wada I, Ling N, Khan MN, Bergeron JJ, Posner BI (1992) Decrease in beta-subunit phosphotyrosine correlates with internalization and activation of the endosomal insulin receptor kinase. J Biol Chem 267: 10077-10086 Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296: 1655-1657 Chen C, Jack J, Garofalo RS (1996) The Drosophila insulin receptor is required for normal growth. Endocrinology 137: 846-856 Chen F, Archambault V, Kar A, Lio P, D'Avino PP, Sinka R, Lilley K, Laue ED, Deak P, Capalbo L, Glover DM (2007) Multiple protein phosphatases are required for mitosis in Drosophila. Curr Biol 17: 293-303 Chen HW, Chen X, Oh SW, Marinissen MJ, Gutkind JS, Hou SX (2002) mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family. Genes Dev 16: 388-398 Cheng A, Dube N, Gu F, Tremblay ML (2002) Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 269: 1050-1059 Clemens JC, Ursuliak Z, Clemens KK, Price JV, Dixon JE (1996) A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance. J Biol Chem 271: 17002-17005 De Meyts P, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1: 769-783 Easty D, Gallagher W, Bennett DC (2006) Protein tyrosine phosphatases, new targets for cancer therapy. Curr Cancer Drug Targets 6: 519-532 Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283: 1544-1548 Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. Embo J 14: 3373-3384 Fernandez-Almonacid R, Rosen OM (1987) Structure and ligand specificity of the Drosophila melanogaster insulin receptor. Mol Cell Biol 7: 2718-2727 Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG (1993) Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. Embo J 12: 4843-4856 Fu XY, Schindler C, Improta T, Aebersold R, Darnell JE, Jr. (1992) The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci U S A 89: 7840-7843 Fujimoto M, Naka T (2003) Regulation of cytokine signaling by SOCS family molecules. Trends Immunol 24: 659-666 Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 23: 2096-2108 Garofalo RS (2002) Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 13: 156-162 Gilbert MM, Weaver BK, Gergen JP, Reich NC (2005) A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation. Mech Dev 122: 939-948 Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13: 3244-3258 Greenhalgh CJ, Hilton DJ (2001) Negative regulation of cytokine signaling. J Leukoc Biol 70: 348-356 Gu F, Dube N, Kim JW, Cheng A, Ibarra-Sanchez Mde J, Tremblay ML, Boisclair YR (2003) Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 23: 3753-3762 Guan KL, Dixon JE (1991) Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem 266: 17026-17030 Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295: 1708-1711 Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J 14: 2857-2865 Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N (1998) Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 12: 3252-3263 Haspel RL, Salditt-Georgieff M, Darnell JE, Jr. (1996) The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. Embo J 15: 6262-6268 Henriksen MA, Betz A, Fuccillo MV, Darnell JE, Jr. (2002) Negative regulation of STAT92E by an N-terminally truncated STAT protein derived from an alternative promoter site. Genes Dev 16: 2379-2389 Hombria JC, Brown S, Hader S, Zeidler MP (2005) Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand. Dev Biol 288: 420-433 Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84: 411-419 Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20: 5479-5489 Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH (2007) Double Knockouts reveal that Protein Tyrosine Phosphatase 1B is a Physiological Target of Calpain-1 in Platelets. Mol Cell Biol Luo H, Hanratty WP, Dearolf CR (1995) An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. Embo J 14: 1412-1420 McLaughlin S, Dixon JE (1993) Alternative splicing gives rise to a nuclear protein tyrosine phosphatase in Drosophila. J Biol Chem 268: 6839-6842 Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279: 37716-37725 Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436: 871-875 Peters GH, Frimurer TM, Olsen OH (1998) Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases. Biochemistry 37: 5383-5393 Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117: 1281-1283 Ruan Y, Chen C, Cao Y, Garofalo RS (1995) The Drosophila insulin receptor contains a novel carboxyl-terminal extension likely to play an important role in signal transduction. J Biol Chem 270: 4236-4243 Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O'Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8: 793-802 Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE, Jr. (1992) Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci U S A 89: 7836-7839 Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103: 211-225 Seecof RL, Dewhurst S (1974) Insulin is a Drosophila hormone and acts to enhance the differentiation of embryonic Drosophila cells. Cell Differ 3: 63-70 Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 16: 196-202 Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 275: C1640-1652 Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 12: 446-453 Song J, Wu L, Chen Z, Kohanski RA, Pick L (2003) Axons guided by insulin receptor in Drosophila visual system. Science 300: 502-505 ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22: 5662-5668 Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol 18: 1622-1634 Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7: 833-846 Tsai YC, Sun YH (2004) Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 39: 141-153 Ursuliak Z, Clemens JC, Dixon JE, Price JV (1997) Differential accumulation of DPTP61F alternative transcripts: regulation of a protein tyrosine phosphatase by segmentation genes. Mech Dev 65: 19-30 Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291: 2376-2378 White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269: 1-4 Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun 297: 811-817 Yanagawa S, Lee JS, Ishimoto A (1998) Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J Biol Chem 273: 32353-32359 Yan R, Small S, Desplan C, Dearolf CR, Darnell JE, Jr. (1996) Identification of a Stat gene that functions in Drosophila development. Cell 84: 421-430 Yu WM, Hawley TS, Hawley RG, Qu CK (2003) Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 22: 5995-6004 Zeidler MP, Bach EA, Perrimon N (2000) The roles of the Drosophila JAK/STAT pathway. Oncogene 19: 2598-2606 Zi Z, Cho KH, Sung MH, Xia X, Zheng J, Sun Z (2005) In silico identification of the key components and steps in IFN-gamma induced JAK-STAT signaling pathway. FEBS Lett 579: 1101-1108 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25389 | - |
| dc.description.abstract | 果蠅酪氨酸去磷酸酶dPTP61F是人類PTP1B及TCPTP的異物種同源基因,研究已知這兩種人類PTP參與了許多訊息路徑的調控,因此,對dPTP61F功能的探討將使我們對PTP在訊息傳遞及發育過程所扮演的角色有更深入的了解。dPTP61F基因會在3’-端發生選擇性剪切而產生兩種在羧基端擁有不同胺基酸序列的PTP,分別為表現在細胞內膜狀構造上的dPTP61Fm,和位於細胞核內的 dPTP61Fn。這兩種isoforms擁有完全相同的PTP domain以及一致的酵素活性,暗示著兩者對受質的專一性取決於它們在細胞內空間分佈的不同。
本篇論文中,我們分別對這兩種PTP isoforms進行了功能上的探討。首先,利用RNAi的方式抑制dPTP61F基因的表現,可發現dIR受胰島素刺激而產生的磷酸化程度明顯增強,顯示dPTP61F是果蠅的胰島素訊息傳遞中的負向調控者。此外,當在S2細胞內大量表現dPTP61Fm或dPTP61Fn蛋白質,發現僅有表現在細胞質的dPTP61Fm可對dIR造成去磷酸化,而dPTP61Fn則不能,說明了PTP對受質的專一性與其空間上的分佈一致。接著我們利用果蠅與哺乳類在演化上保守的性質對dPTP61Fn的功能加以研究,已知dPTP61F的哺乳類同源蛋白TCPTP具有一個表現在細胞核內的isoform,能夠將轉錄因子STAT去磷酸化而抑制其活性,因此我們推測在果蠅JAK/STAT路徑中,dPTP61Fn亦可透過將STAT92E去磷酸化而抑制其轉錄活性;另一方面,dPTP61Fm則可能具有與PTP1B類似的功能,可辨認JAK (Hop)為受質。利用短暫轉染的方式,我們發現dPTP61Fm能對Hop造成明顯的去磷酸化,當表現的是不具去磷酸酶活性的C/S 突變蛋白,則會出現顯性抑制(dominant-negative)的現象,顯示Hop的磷酸化持續受到內生性PTP的抑制。同樣的實驗若表現dPTP61Fn蛋白質,則不會對Hop的磷酸化有所影響,但此時可觀察到STAT92E的磷酸化程度下降,且表現dPTP61Fn C/S突變蛋白時也會產生顯性抑制的效果,這些結果指出STAT92E極有可能為dPTP61F的受質。有趣的是,當細胞以Upd刺激造成JAK/STAT訊息路徑的活化,隨著處理時間增加,可觀察到dPTP61F蛋白質的量逐漸上升。利用dsRNA抑制STAT92E的表現並觀察dPTP61F蛋白質及mRNA表現量的變化,我們確認了dPTP61F基因的表現受到STAT92E的轉錄活性所調控,且dPTP61Fm與dPTP61Fn的mRNA都會因為Upd訊息路徑的活化而增加,暗示著dPTP61F的兩個isoforms皆參與在JAK/STAT路徑的負向調控迴路中。 目前,我們已發現dPTP61F在胰島素訊息傳遞以及JAK/STAT路徑中扮演著負向的調控角色,且dPTP61F的兩種isoforms會依其細胞內分佈的區域而展現不同的受質專一性。由於胰島素與JAK/STAT的訊息傳遞路徑與許多重要的生理現象緊密相關,代表著dPTP61F在維持果蠅的正常生長發育上扮演著重要的角色。 | zh_TW |
| dc.description.abstract | The Drosophila protein tyrosine phosphatase dPTP61F is an ortholog of human PTP1B and TCPTP, both of which are involved in the regulation of various signaling pathways. Thus, it is essential to characterize the function of dPTP61F for revealing the potential role of PTPs in the control of signal transcution and development. The dPTP61F gene undergoes alternative splicing at 3’-end of the transcript, resulting in an internal membrane-associated form dPTP61Fm and a nucleus-localized form dPTP61Fn. These two PTP isoforms share the identical catalytic domain, suggesting that the substrate specificity may be modulated by the subcellular location of the phosphatase. In the current study, we have explored the functional roles of both two isoforms of dPTP61F.
Applying RNA interference (RNAi) approach to knock down both isoforms of dPTP61F, we found that the tyrosine phosphorylation of dIR was enhanced in S2 cells stimulated with insulin, suggesting that dPTP61F may function as a negative regulator in insulin-mediated signal transduction. Moreover, when overexpressed in S2 cells, only the dPTP61Fm, but not the dPTP61Fn, was capable of dephosphorylating dIR. Furthermore, we showed that the access of dIR was determined by the distinct cytosolic/plasma membrane localization of dPTP61Fm, as confirmed by results from immunofluorescence staining in S2 cells. We further explored the potential role of the nuclear form of dPTP61F. It has been shown that the evolutionarily conserved ortholog of dPTP61Fn, the mammalian TCPTP, which dephosphorylates and inactivates transcription factor STAT, is present in nucleus. Therefore, we proposed that dPTP61Fn may antagonize JAK/STAT signaling by facilitating dephosphorylation of Drosophila STAT92E. In contrast, dPTP61Fm may exert a similar role as mammalian PTP1B, which recognizes JAK (Hop) as a potential substrate. We observed that, when dPTP61Fm was overexpressed, Hop was significantly dephosphorylated. Forced expression of phosphatase-dead (C/S) mutant form of dPTP61Fm showed dominant negative effect. These results suggest that dPTP61Fm is indeed a Hop phosphatase and that the phosphorylation level of Hop is constitutively suppressed by the endogenous dPTP61Fm. Furthermore, the dephosphorylation event is executed only by the membrane-bound PTP isoform. In addition, we also found that the phosphorylation level of STAT92E was decreased when dPTP61Fn was overexpressed, suggesting that STAT92E is a potential substrate of the nuclear form of PTP. Interestingly, the protein expression of dPTP61F was increased in response to activation of Upd signaling following a time-dependent manner. Using the RNAi approach, we demonstrated that the up-regulation of dPTP61F gene expression was modulated by the transcription activity of STAT92E. Performing a RT-PCR experiment, we also confirmed that both the amount of dPTP61Fm and dPTP61Fn tarnscripts were affected by JAK/STAT activity. These results implicated that dPTP61F is a putative target gene of STAT and that both isoforms of this phosphatase may participate in the negative feedback regulation of JAK/STAT signaling pathway. In summary, our studies have revealed the negative regulatory role of dPTP61F in Drosophila insulin and JAK/STAT signaling pathways. We showed that each of the dPTP61F isoform has specific functions in different compartments inside a single cell. Both pathways control important signaling events, suggesting that dPTP61F may play an essential role for the maintanance of proper cellular processes during Drosophila development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:11:30Z (GMT). No. of bitstreams: 1 ntu-96-R94b46014-1.pdf: 2215250 bytes, checksum: 1f56f85e989dc932ee3f928a0f49ea2b (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄 I
圖表目錄 IV 縮寫表 VI 中文摘要 VII 英文摘要 IX 第一章 前言 1 一. 酪氨酸去磷酸酶 1 二. 果蠅酪氨酸去磷酸酶¬¬¬¬ --- dPTP61F 2 三. 酪氨酸去磷酸酶在胰島素訊息傳遞中的調控角色 3 (一)胰島素之訊息傳遞 4 (二)酪氨酸去磷酸酶的調控角色 5 (三)果蠅的胰島素訊息傳遞 5 四. 酪氨酸去磷酸酶在JAK/STAT訊息傳遞中的調控角色 6 (一)核內酪氨酸去磷酸酶dPTP61Fn的潛在功能 6 (二)典型的JAK/STAT訊息傳遞路徑 8 (三)果蠅的JAK/STAT訊息傳遞路徑 10 第二章 材料與方法 13 一. 材料 13 (一)化學藥品 13 (二)酵素 13 (三)細胞株 13 (四)cDNA 13 (五)引子 13 (六)抗體 13 (七)儀器 14 (八)軟體 14 二. 方法 15 (一)細胞培養 15 (二)細胞抽出物之製備 15 (三)蛋白質定量分析 15 (四)正二十烷硫酸鈉-聚苯乙烯醯胺膠體電泳 15 (五)西方墨點分析法 16 (六)細胞的短暫轉染實驗 16 (七)免疫沉澱法 17 (八)免疫螢光染色法 17 (九)勝任細胞的製備 18 (十)轉型作用 18 (十一)質體DNA之製備 19 (十二)表現質體之建立 19 (十三)S2細胞cDNA library的建立 20 (十四)利用點突變的方式製作dPTP61Fn C/S mutant以及HopTum-l的表現 質體 21 (十五)在培養的果蠅細胞中進行RNA干擾實驗 21 (十六)抗體的製備 23 (十七)生物資訊 23 第三章 實驗結果 25 一.在果蠅S2及S2R+細胞中,果蠅酪氨酸去磷酸酶dPTP61F經由選擇性剪切 所產生的兩個isoforms展現截然不同的細胞內分佈情形 25 二.果蠅的胰島素受器(dIR)在胰島素刺激之下磷酸化的情形 26 三.以RNA干擾方式抑制dPTP61F的蛋白質表現,會造成dIR activation loop中 的酪氨酸磷酸化程度上升 26 四.在胰島素的刺激之下,dPTP61Fn在細胞內的分佈情形 27 五.對dIR的去磷酸化是由dPTP61Fm來執行,而非由dPTP61Fn 28 六.α-dPTP61Fn 及α-pY711STAT92E多株抗體的製備與測試 29 七.果蠅系統中,JAK(Hop)與STAT(STAT92E)的酪氨酸磷酸化狀態 30 八.dPTP61Fm可對HopTum-l去磷酸化,而表現dPTP61F的phosphatase-dead (C/S)mutant會產生dominant-negative的效果 31 九.以免疫螢光染色法觀察HopTum-l及dPTP61Fn在S2細胞內的分佈 32 十.比較dPTP61Fm與dPTP61Fn對HopTum-l及STAT磷酸化程度的影響 32 十一.比較dPTP61Fm與dPTP61Fn對HopTum-l及STAT磷酸化程度的影響 33 十二.在Upd的刺激下,dPTP61Fn蛋白質的分佈仍維持在細胞核內 34 十三.長時間的Upd處理造成dPTP61F蛋白質的表現量上升 34 十四.dPTP61F基因的轉錄受到STAT92E的調控,顯示此PTP可能參與在 果蠅JAK/STAT訊息路徑的負向調控迴路中 35 十五.JAK/STAT的活性同時影響dPTP61Fm及dPTP61Fn mRNA的表現量 36 第四章 討論 38 一. 在果蠅的胰島素訊息傳遞中,dPTP61F具有保守性的功能 38 二. dPTP61F在JAK/STAT訊息傳遞路徑中所扮演的角色 40 三.dPTP61F的兩種isoforms dPTP61Fm及dPTP61Fn因在細胞內分佈的區域 不同而擁有不同的受質專一性,並皆扮演重要的訊息調控角色 43 第五章 參考文獻 72 圖表目錄 圖表 圖1. dPTP61Fm及dPTP61Fn在果蠅S2細胞內呈現不同的區域化分佈 45 圖2. 以胰島素刺激S2細胞以造成dIR的活化 47 圖3. 以RNAi的實驗說明dPTP61F是果蠅胰島素訊息傳遞的負向調控者 48 圖4. 在胰島素的刺激下,dPTP61Fm和dPTP61Fn在S2及S2R+細胞內的分 佈情形與未處理的細胞相同 49 圖5. 對dIR的去磷酸化是由dPTP61Fm來執行而非由dPTP61Fn 51 圖6. α-dPTP61Fn 及α-pY711STAT92E多株抗體的測試結果 52 圖7. 比較異位表現的Hop及HopTum-l之酪氨酸磷酸化強度,並同時觀察內生 性STAT磷酸化程度的變化 53 圖8. dPTP61Fm可對HopTum-l去磷酸化,而表現dPTP61Fm的phosphatase-dead (C/S)mutant會產生dominant-negative的效果 54 圖9. 同時觀察HopTum-l及dPTP61Fn在S2細胞內的分佈情形 55 圖10. 對Hop的去磷酸化是由dPTP61Fm來執行,而對STAT磷酸化的抑制則 主要是透過dPTP61Fn來達成 56 圖11. 比較直接轉染或以共培養(coculture)的方式進行Upd對S2細胞的處理 對STAT活化程度的影響 57 圖12. 在Upd的刺激下,dPTP61Fn蛋白質的分佈仍維持在細胞核內 58 圖13. 給予細胞長時間的Upd刺激,會造成dPTP61F的蛋白質表現量上升 59 圖14. dPTP61F基因的表現受到STAT92E在轉錄上的調控 60 圖15. JAK/STAT的活性同時影響dPTP61Fm及dPTP61Fn mRNA的表現量 61 附圖 附圖一、果蠅、線蟲及人類PTP基因的同源關係 62 附圖二、dPTP61F經由選擇性剪切產生兩種isoforms 63 附圖三、不同物種之間的胰島素訊息傳遞路徑在演化上具有保守性 64 附圖四、哺乳類與果蠅系統中典型的JAK/STAT訊息傳遞路徑 65 附圖五、在果蠅細胞進行外來蛋白質表現所使用的載體 66 附表 附表一 緩衝液配方 67 附表二 引子 68 附表三 抗體 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 受質專一性 | zh_TW |
| dc.subject | dPTP61F | zh_TW |
| dc.subject | 果蠅酪氨酸去磷酸酶 | zh_TW |
| dc.subject | dPTP61F | en |
| dc.subject | substrate specificity | en |
| dc.subject | Drosophila protein tyrosine phosphatase | en |
| dc.title | 果蠅酪氨酸去磷酸酶PTP61F功能之探討:由細胞內分佈位置的不同決定其受質專一性 | zh_TW |
| dc.title | Characterization of Drosophila Protein Tyrosine Phosphatase PTP61F: Determination of Substrate Specificity by Subcellular Localization of PTP Isoforms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊志立,蔡玉真 | |
| dc.subject.keyword | 果蠅酪氨酸去磷酸酶,dPTP61F,受質專一性, | zh_TW |
| dc.subject.keyword | Drosophila protein tyrosine phosphatase,dPTP61F,substrate specificity, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
