請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25376
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃敏銓 | |
dc.contributor.author | Wan-Ching Wen | en |
dc.contributor.author | 溫宛菁 | zh_TW |
dc.date.accessioned | 2021-06-08T06:11:00Z | - |
dc.date.copyright | 2007-07-17 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-09 | |
dc.identifier.citation | Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D., and Stetler-Stevenson, W. G. (1991). Tumor cell invasion inhibited by TIMP-2. Journal of the National Cancer Institute 83, 775-779.
Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., and Saltiel, A. R. (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. The Journal of biological chemistry 270, 27489-27494. Almeida, M., Han, L., Bellido, T., Manolagas, S. C., and Kousteni, S. (2005). Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280, 41342-41351. Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G., and Newby, A. C. (1999). Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British journal of cancer 79, 1347-1355. Behrens, J. (2005). The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochemical Society transactions 33, 672-675. Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D., and Birchmeier, W. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science (New York, NY 280, 596-599. Bertaux, B., Hornebeck, W., Eisen, A. Z., and Dubertret, L. (1991). Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. The Journal of investigative dermatology 97, 679-685. Bill RM, R. L., Wilson IBH, ed. (1998). Protein glycosylation, (Boston:Kluwer Academic publisher). Birchmeier, C., Birchmeier, W., and Brand-Saberi, B. (1996). Epithelial-mesenchymal transitions in cancer progression. Acta anatomica 156, 217-226. Boland, C. R., Thibodeau, S. N., Hamilton, S. R., Sidransky, D., Eshleman, J. R., Burt, R. W., Meltzer, S. J., Rodriguez-Bigas, M. A., Fodde, R., Ranzani, G. N., and Srivastava, S. (1998). A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer research 58, 5248-5257. Brabletz, T., Jung, A., Dag, S., Hlubek, F., and Kirchner, T. (1999). beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American journal of pathology 155, 1033-1038. Brantjes, H., Barker, N., van Es, J., and Clevers, H. (2002). TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biological chemistry 383, 255-261. Brunton, V. G., Avizienyte, E., Fincham, V. J., Serrels, B., Metcalf, C. A., 3rd, Sawyer, T. K., and Frame, M. C. (2005). Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer research 65, 1335-1342. Calvert PM, F. H. (2002 ). The genetics of colorectal cancer. Ann Intern Med 137(7), 603-612. Calvert, P. M., and Frucht, H. (2002). The genetics of colorectal cancer. Annals of internal medicine 137, 603-612. Chambers, A. F., and Matrisian, L. M. (1997). Changing views of the role of matrix metalloproteinases in metastasis. Journal of the National Cancer Institute 89, 1260-1270. Chaplain, M. A., McDougall, S. R., and Anderson, A. R. (2006). Mathematical modeling of tumor-induced angiogenesis. Annual review of biomedical engineering 8, 233-257. Chirco, R., Liu, X. W., Jung, K. K., and Kim, H. R. (2006). Novel functions of TIMPs in cell signaling. Cancer metastasis reviews 25, 99-113. Cho, S. H., Sahin, A., Hortobagyi, G. N., Hittelman, W. N., and Dhingra, K. (1994). Sialyl-Tn antigen expression occurs early during human mammary carcinogenesis and is associated with high nuclear grade and aneuploidy. Cancer research 54, 6302-6305. Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., Goss, K. J., Rubinfeld, B., Polakis, P., and Matrisian, L. M. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18, 2883-2891. deFazio, A., Chiew, Y. E., Sini, R. L., Janes, P. W., and Sutherland, R. L. (2000). Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. International journal of cancer 87, 487-498. Dell, A., Morris, H. R., Easton, R. L., Panico, M., Patankar, M., Oehniger, S., Koistinen, R., Koistinen, H., Seppala, M., and Clark, G. F. (1995). Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. The Journal of biological chemistry 270, 24116-24126. Dennis, J. W., Granovsky, M., and Warren, C. E. (1999). Glycoprotein glycosylation and cancer progression. Biochimica et biophysica acta 1473, 21-34. Ding, Q., Xia, W., Liu, J. C., Yang, J. Y., Lee, D. F., Xia, J., Bartholomeusz, G., Li, Y., Pan, Y., Li, Z., et al. (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Molecular cell 19, 159-170. Docherty, A. J., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J., Murphy, G., and Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66-69. Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11-22. Dube, D. H., and Bertozzi, C. R. (2005). Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4, 477-488. Dwek, M. V., and Brooks, S. A. (2004). Harnessing changes in cellular glycosylation in new cancer treatment strategies. Current cancer drug targets 4, 425-442. Dwivedi, S. J. G. a. A. (2004;). MMPs, Cadherins, and Cell Proliferation. Trends Cardiovasc Med 14:, 100–105. Efstathiou, J. A., and Pignatelli, M. (1998). Modulation of epithelial cell adhesion in gastrointestinal homeostasis. The American journal of pathology 153, 341-347. Eger, A., Stockinger, A., Schaffhauser, B., Beug, H., and Foisner, R. (2000). Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. The Journal of cell biology 148, 173-188. Fearon, E. R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61, 759-767. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82, 4-6. Fowlkes, J. L., Enghild, J. J., Suzuki, K., and Nagase, H. (1994). Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. The Journal of biological chemistry 269, 25742-25746. George, S. J., and Dwivedi, A. (2004). MMPs, cadherins, and cell proliferation. Trends in cardiovascular medicine 14, 100-105. Goldstein, N. S. (2006). Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. American journal of clinical pathology 125, 146-153. Gradl, D., Kuhl, M., and Wedlich, D. (1999). The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and cellular biology 19, 5576-5587. Guedez, L., McMarlin, A. J., Kingma, D. W., Bennett, T. A., Stetler-Stevenson, M., and Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis. The American journal of pathology 158, 1207-1215. Guedez, L., Stetler-Stevenson, W. G., Wolff, L., Wang, J., Fukushima, P., Mansoor, A., and Stetler-Stevenson, M. (1998). In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. The Journal of clinical investigation 102, 2002-2010. Hajra, K. M., and Fearon, E. R. (2002). Cadherin and catenin alterations in human cancer. Genes, chromosomes & cancer 34, 255-268. Hakomori, S. (1984). Philip Levine award lecture: blood group glycolipid antigens and their modifications as human cancer antigens. American journal of clinical pathology 82, 635-648. Hakomori, S. (1996). Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer research 56, 5309-5318. Hakomori, S. (2000). Traveling for the glycosphingolipid path. Glycoconjugate journal 17, 627-647. Hakomori, S. (2002). Glycosylation defining cancer malignancy: new wine in an old bottle. Proceedings of the National Academy of Sciences of the United States of America 99, 10231-10233. Hakomori, S., and Zhang, Y. (1997). Glycosphingolipid antigens and cancer therapy. Chemistry & biology 4, 97-104. Hamilton, S. R. (1993). The molecular genetics of colorectal neoplasia. Gastroenterology 105, 3-7. Hayakawa, T., Yamashita, K., Ohuchi, E., and Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of cell science 107 ( Pt 9), 2373-2379. Hayakawa, T., Yamashita, K., Tanzawa, K., Uchijima, E., and Iwata, K. (1992). Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS letters 298, 29-32. He TC, S. A., Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. (1998 ). Identification of c-MYC as a target of the APC pathway. Science 281(5382), 1509-1512. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1998). Identification of c-MYC as a target of the APC pathway. Science (New York, NY 281, 1509-1512. Hewitt, R. E., Brown, K. E., Corcoran, M., and Stetler-Stevenson, W. G. (2000). Increased expression of tissue inhibitor of metalloproteinases type 1 (TIMP-1) in a more tumourigenic colon cancer cell line. The Journal of pathology 192, 455-459. Hiyama, J., Weisshaar, G., and Renwick, A. G. (1992). The asparagine-linked oligosaccharides at individual glycosylation sites in human thyrotrophin. Glycobiology 2, 401-409. Ho, A. T., Voura, E. B., Soloway, P. D., Watson, K. L., and Khokha, R. (2001). MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function. The Journal of biological chemistry 276, 40215-40224. Holten-Andersen, M. N., Stephens, R. W., Nielsen, H. J., Murphy, G., Christensen, I. J., Stetler-Stevenson, W., and Brunner, N. (2000). High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 6, 4292-4299. Ikehara, Y., Sato, T., Niwa, T., Nakamura, S., Gotoh, M., Ikehara, S. K., Kiyohara, K., Aoki, C., Iwai, T., Nakanishi, H., et al. (2006). Apical Golgi localization of N,N'-diacetyllactosediamine synthase, beta4GalNAc-T3, is responsible for LacdiNAc expression on gastric mucosa. Glycobiology 16, 777-785. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., and Okada, Y. (1997). Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. The Biochemical journal 322 ( Pt 3), 809-814. Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., and Shi, Y. E. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer research 61, 2365-2370. Jones, J. L., Glynn, P., and Walker, R. A. (1999). Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. The Journal of pathology 189, 161-168. Joo, Y. E., Seo, K. S., Kim, H. S., Rew, J. S., Park, C. S., and Kim, S. J. (2000). Expression of tissue inhibitors of metalloproteinases (TIMPs) in gastric cancer. Digestive diseases and sciences 45, 114-121. Kambara, T., Simms, L. A., Whitehall, V. L., Spring, K. J., Wynter, C. V., Walsh, M. D., Barker, M. A., Arnold, S., McGivern, A., Matsubara, N., et al. (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53, 1137-1144. Karim, R., Tse, G., Putti, T., Scolyer, R., and Lee, S. (2004). The significance of the Wnt pathway in the pathology of human cancers. Pathology 36, 120-128. Kim, D., Rath, O., Kolch, W., and Cho, K. H. (2007). A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways. Oncogene. Kolch, W., Kotwaliwale, A., Vass, K., and Janosch, P. (2002). The role of Raf kinases in malignant transformation. Expert reviews in molecular medicine [electronic resource] 2002, 1-18. Kressner, U., Inganas, M., Byding, S., Blikstad, I., Pahlman, L., Glimelius, B., and Lindmark, G. (1999). Prognostic value of p53 genetic changes in colorectal cancer. J Clin Oncol 17, 593-599. Liu, Y., Poon, R. T., Li, Q., Kok, T. W., Lau, C., and Fan, S. T. (2005). Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 65, 3691-3699. Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z., and Bissell, M. J. (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of cell biology 139, 1861-1872. Luparello, C., Avanzato, G., Carella, C., and Pucci-Minafra, I. (1999). Tissue inhibitor of metalloprotease (TIMP)-1 and proliferative behaviour of clonal breast cancer cells. Breast cancer research and treatment 54, 235-244. Malbon, C. C. (2005). Beta-catenin, cancer, and G proteins: not just for frizzleds anymore. Sci STKE 2005, pe35. McCawley, L. J., and Matrisian, L. M. (2001). Matrix metalloproteinases: they're not just for matrix anymore! Current opinion in cell biology 13, 534-540. McLean, G. W., Carragher, N. O., Avizienyte, E., Evans, J., Brunton, V. G., and Frame, M. C. (2005). The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5, 505-515. Mei, J. M., Borchert, G. L., Donald, S. P., and Phang, J. M. (2002). Matrix metalloproteinase(s) mediate(s) NO-induced dissociation of beta-catenin from membrane bound E-cadherin and formation of nuclear beta-catenin/LEF-1 complex. Carcinogenesis 23, 2119-2122. Moon, R. T., Kohn, A. D., De Ferrari, G. V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nature reviews 5, 691-701. Morin, P. J. (1999). beta-catenin signaling and cancer. Bioessays 21, 1021-1030. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K. W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science (New York, NY 275, 1787-1790. Narimatsu, H. (2006). Human glycogene cloning: focus on beta 3-glycosyltransferase and beta 4-glycosyltransferase families. Current opinion in structural biology 16, 567-575. Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., Bruyneel, E., Matrisian, L. M., and Mareel, M. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of cell science 114, 111-118. Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M., and Weed, S. A. (2000). Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606-5613. Polakis, P. (2000). Wnt signaling and cancer. Genes & development 14, 1837-1851. Powe, D. G., Brough, J. L., Carter, G. I., Bailey, E. M., Stetler-Stevenson, W. G., Turner, D. R., and Hewitt, R. E. (1997). TIMP-3 mRNA expression is regionally increased in moderately and poorly differentiated colorectal adenocarcinoma. British journal of cancer 75, 1678-1683. Rajagopalan, H., Nowak, M. A., Vogelstein, B., and Lengauer, C. (2003). The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3, 695-701. Rege, T. A., Fears, C. Y., and Gladson, C. L. (2005). Endogenous inhibitors of angiogenesis in malignant gliomas: nature's antiangiogenic therapy. Neuro-oncology 7, 106-121. Rottinger, E., Besnardeau, L., and Lepage, T. (2004). A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. In Development, pp. 1075-1087. Rowe, T. F., King, L. A., MacDonald, P. C., and Casey, M. L. (1997). Tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 expression in human amnion mesenchymal and epithelial cells. American journal of obstetrics and gynecology 176, 915-921. Schonbeck, U., Mach, F., and Libby, P. (1998). Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 161, 3340-3346. Sell, S. (1990). Cancer-associated carbohydrates identified by monoclonal antibodies. Human pathology 21, 1003-1019. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., and Ben-Ze'ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 5522-5527. Smith, P. L., Skelton, T. P., Fiete, D., Dharmesh, S. M., Beranek, M. C., MacPhail, L., Broze, G. J., Jr., and Baenziger, J. U. (1992). The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. The Journal of biological chemistry 267, 19140-19146. Springer, T. A., and Lasky, L. A. (1991). Cell adhesion. Sticky sugars for selectins. Nature 349, 196-197. Stetler-Stevenson, W. G., Bersch, N., and Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS letters 296, 231-234. Takashi Sato, M. G., Katsue Kiyohara, Akihiko Kameyama, Tomomi Kubota, Norihiro Kikuchi, Yasuko Ishizuka, Hiroko Iwasaki, Akira Togayachi, Takashi Kudo, Takashi Ohkura, Hiroshi Nakanishi, and Hisashi Narimatsu (2003). Molecular Cloning and Characterization of a Novel Human 1,4-N-Acetylgalactosaminyltransferase, 4GalNAc-T3, Responsible for the Synthesis of N,N'-Diacetyllactosediamine, GalNAc1–4GlcNAc. J Biol Chem, 278, 47534 - 47544 Taupin, D., and Podolsky, D. K. (1999). Mitogen-activated protein kinase activation regulates intestinal epithelial differentiation. Gastroenterology 116, 1072-1080. Taylor-Papadimitriou, J., and Epenetos, A. A. (1994). Exploiting altered glycosylation patterns in cancer: progress and challenges in diagnosis and therapy. Trends in biotechnology 12, 227-233. Tetsu, O., and McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426. Troppmair, J., Bruder, J. T., Munoz, H., Lloyd, P. A., Kyriakis, J., Banerjee, P., Avruch, J., and Rapp, U. R. (1994). Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. The Journal of biological chemistry 269, 7030-7035. Vosseller, K., Wells, L., and Hart, G. W. (2001). Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. Biochimie 83, 575-581. Wendy J. Huss, C. F. H., Roberto J. Barrios, Jonathan W. Simons, and Norman M. Greenberg ( 2001). Angiogenesis and Prostate Cancer: Identification of A Molecular Progression Switch. CANCER RESEARCH 61, , 2736–2743, . Whitelock, J. M., Murdoch, A. D., Iozzo, R. V., and Underwood, P. A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. The Journal of biological chemistry 271, 10079-10086. Wiley, E. L., Mendelsohn, G., and Eggleston, J. C. (1981). Distribution of carcinoembryonic antigens and blood group substances in adenocarcinoma of the colon. Laboratory investigation; a journal of technical methods and pathology 44, 507-513. Yamashita, K., Suzuki, M., Iwata, H., Koike, T., Hamaguchi, M., Shinagawa, A., Noguchi, T., and Hayakawa, T. (1996). Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). FEBS letters 396, 103-107. Yonezawa, S., Nakamura, T., Tanaka, S., and Sato, E. (1982). Glycoconjugate with Ulex europaeus agglutinin-I-binding sites in normal mucosa, adenoma, and carcinoma of the human large bowel. Journal of the National Cancer Institute 69, 777-785. Yu, Q., and Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & development 14, 163-176. Yun, M. S., Kim, S. E., Jeon, S. H., Lee, J. S., and Choi, K. Y. (2005). Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci 118, 313-322. Zeng, Z. S., Cohen, A. M., Zhang, Z. F., Stetler-Stevenson, W., and Guillem, J. G. (1995). Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1, 899-906. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25376 | - |
dc.description.abstract | 醣基化作用(Glycosylation)在蛋白質的後轉譯修飾作用中扮演相當重要的角色。這些醣基化作用所產生的醣類結構經由改變細胞膜上蛋白質的結構而影響細胞的行為,包括訊息傳遞以及細胞和細胞間的黏附作用等。近年來對癌症的研究發現,蛋白質及脂質上的異常醣基化作用往往造成細胞的癌化,例如:形成T-antigen影響癌細胞的轉移、侵襲和生長等能力。這些醣類結構由單醣所構成,其改變往往藉由去醣基酵素(glycosidase)和醣轉移酵素(glycosyltransferase)的合作形成多種醣類結構。
最近才被發現的β1,4-N-acetylgalactosaminyltransferase-III (β4GalNAc-T3)是一種醣轉移酵素(glycosyltransferase),它能使GalNAc結合在帶有GlcNAc的醣類上形成N,N’-diacetylgalactosediamine (GalNAcβ1-4GlcNAc)的結構。這種結構在O-linked及N-linked的醣類結構上都曾被發現。另外,之前的研究指出,β4GalNAc-T3的mRNA在胃以及大腸都有大量的表現,但是其功能還不十分了解。因此,在本篇研究中,我們利用HCT116大腸癌細胞株進行β4GalNAc-T3的基因轉殖,建立能表現β4GalNAc-T3的穩定細胞株,觀察β4GalNAc-T3的過量表現在大腸癌細胞中扮演的角色。 我們發現,β4GalNAc-T3的細胞株較早伸出pseudopodium,形成尖細紡錘狀。我們利用螢光染色檢測CD29, FAK [pY397], actin以及 FAK這些與細胞黏附分子有關的蛋白質在兩株細胞中的表現,發現β4GalNAc-T3造成細胞骨架的重新分布。另外,將兩株細胞分別植入SCID和NOD-SCID品系的老鼠,發現帶有β4GalNAc-T3基因的腫瘤在體積和重量上都比較大。此外我們看見有許多血管分布在腫瘤表面,為進一步瞭解β4GalNAc-T3是否能引起血管新生因子的釋放進而影響血管新生,利用組織免疫染色檢測CD31/PECAM-1分布情況並計算血管密度,發現並沒有顯著差異。同時,待兩株細胞株長滿後收集細胞培養液加入初級培養的人類臍靜脈內皮細胞並進行MTT細胞生長檢測。實驗結果發現,兩株細胞的培養液對於內皮細胞的生長也沒有明顯差異,這表示β4GalNAc-T3造成腫瘤生長較大可能不是藉由血管新生造成。 然而,兩株細胞的MTT生長檢測以及trypan blue染色顯示β4GalNAc-T3基因直接影響細胞生長的速率,促使細胞生長較mock細胞株快速。爲了解β4GalNAc-T3造成細胞生長快速的機制,利用西方免疫轉漬法,發現磷酸化的ERK在β4GalNAc-T3的穩定細胞株中表現量比mock上升;當以ERK上游MEK的抑制劑,PD98059處理細胞後,磷酸化的ERK在β4GalNAc-T3的細胞株中表現量下降,進一步利用MTT生長檢測觀察經PD98059處理後細胞的生長狀況,發現β4GalNAc-T3的細胞株其生長速率亦隨之下降。定量即時PCR顯示E-cadherin以及 β-catenin的mRNA在β4GalNAc-T3的細胞株表現量較mock高。這些結果暗示著β4GalNAc-T3可能藉由MEK/ERK MAP kinase這條路徑來調控癌細胞的生長快速;此外,E-cadherin以及 β-catenin的活化也可能參與β4GalNAc-T3調控細胞生長速率的機制。 | zh_TW |
dc.description.abstract | Colorectal cancer (CRC) is one of the most common tumors and it is a major cause of cancer death worldwide. Colorectal carcinogenesis is a complex multi-step process involving progressive disruption of intestinal epithelial-cell proliferation, apoptosis, differentiation, and survival mechanism. In recent studies, malignant transformation often accompanies aberrant glycosylation changes of glycoproteins and glycolipids. These aberrant glycans can affect a variety of normal cellular functions, such as cell signaling and cell-cell adhesion, and thereby may affect tumor progression. The glycans, which are composed of various monosaccharides, are enzymatically synthesized by glycosyltransferases.
β1,4-N-acetylgalactosaminyltransferase-Ⅲ (β4GalNAc-T3), which was recently cloned and identified, is a glycosyltransferase and highly expressed in the stomach, colon and testis. β4GalNAc-T3 can transfer GalNAc residues to GlcNAc and effectively synthesize, GalNAcβ1-4GlcNAc, at non-reducing termini of various acceptors. The N,N’-diacetylgalactosediamine structures (GalNAcβ1-4GlcNAc) are present on not only N-glycans but also O-glycans. In our study, we used HCT116 colorectal carcinoma cells transfected with β4GalNAc-T3 as a model to investigate the role of β4GalNAc-T3 in colon cancer cell growth in vitro and in vivo. The mock and β4GalNAc-T3 stable clones of HCT116 colorectal carcinoma cells were previously established in our lab. The morphological observation of mock and β4GalNAc-T3 stable clones by a phase-contrast microscope for 24 hours showed that β4GalNAc-T3 stably transfected cells exhibited fibroblastoid morphology with trailing pseudopodia. The immunocytochemical analysis of CD29, FAK [pY397], phalloidin and FAK, which are involved in cell adhesion complex, exhibited that CD29 and FAK protein levels did not change. However, the FAK [pY397] and actin protein levels were greater in β4GalNAc-T3 than in mock transfectants. These data suggest that β4GalNAc-T3 may interfere in the cytoskeleton dynamics. The mock and β4GalNAc-T3 xenograft in SCID and NOD-SCID mice showed that β4GalNAc-T3 enhanced the tumor growth in vivo. Since many blood vessels were located near the surface of excised tumors, the tumors were subjected to immunohistochemistry by CD31/PECAM-1 antibody and the microvessel density was identified. In addition, primary human umbilical vein endothelial cells (HUVECs) were subjected to MTT proliferation assay with conditioned media obtained from mock and β4GalNAc-T3 stable clones. The microvessel density in β4GalNAc-T3 xenograft was similar with those in mock xenograft. Simultaneously, HUVEC cells cultured in the conditioned medium obtained from mock and β4GalNAc-T3 stable clones did not show a significant change in the proliferation rate. These results suggested that β4GalNAc-T3 on enhanced tumor growth does not result from tumor angiogenesis. Nevertheless, the effect of β4GalNAc-T3 gene on HCT116 cell proliferation by using MTT assay and trypan blue exclusion assay displayed that β4GalNAc-T3 promotes cell growth in vitro. To elucidate the mechanism by which β4GalNAc-T3 increases cell proliferation, Western blotting was performed with anti-phospho-ERK1/2, anti-phospho-p38, and anti-phospho-JNK. The expression of phospho-ERK1/2 in β4GalNAc-T3 stable clones was increased as about two times as those in mock. This data indicated that overexpression of β4GalNAc-T3 results in upregulation of phosphorylation level of ERK1/2. When treating with MEK inhibitor, PD98059, the phospho-ERK1/2 was decreased. Simultaneously, the proliferation rate of HCT116/β4GalNAc-T3 stable clones was decreased. We also observed that mRNA expression of MMP-7, TIMP-1, and β-catenin was upregulated in β4GalNAc-T3 stable clones. These results suggest that β4GalNAc-T3 may promotes tumor cell proliferation via activation of MEK/ERK MAP kinase cascades and also be influenced by MMP-7, TIMP-1, and β-catenin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:11:00Z (GMT). No. of bitstreams: 1 ntu-96-R94446002-1.pdf: 2587410 bytes, checksum: fc80ed3df0f266b18f44b422c1506607 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | INDEX
口試委員會審訂書 中文摘要 i Abstract v INDEX viii Chapter 1 INTRODUCTION 1 1.1 Colorectal cancer 1 1.2 Glycobiology 3 1.3 Glycosylation changes in cancer 4 1.4 β1,4-N-acetylgalactosaminyltransferase-III (β4GalNAc-T3) 6 Chapter 2 MATERIALS AND METHODS 8 2.1 Cells 8 2.1.1 HCT-116 human colorectal carcinoma cells 8 2.1.2 Human umbilical vein endothelial cells 8 2.2 Animals and xenograft tumor 9 2.3 Immunohistochemistry 10 2.4 Determination of microvessel density (MVD) 11 2.5 Immunofluorescence 11 2.6 Flow cytometric analysis 12 2.7 Cell number counting by Trypan exclusion assay 12 2.8 MTT proliferation assay 13 2.9 Western blot analysis 13 2.10 Antibodies and drugs 14 2.11 RNA purification 15 2.12 Reverse transcriptase polymerase chain reaction (RT-PCR) 16 2.13 Quantitative real time PCR 16 2.14 Statistical analysis 18 Chapter 3 RESULTS 19 3.1 The mRNA expression of β4GalNAc-T3 was overexpressed in β4GalNAc-T3 stable clones 19 3.2 β4GalNAc-T3 influenced HCT116 cells towards fibroblastoid morphology with predominant pseudopodium and promotes cell spreading 20 3.3 β4GalNAc-T3 induced stronger fluorescence staining of actins in the cell periphery compared with mock 21 3.4 β4GalNAc-T3 promoted growth of colorectal carcinoma xenografts in SCID and NOD-SCID mice 22 3.5 Effect of β4GalNAc-T3 on tumor angiogenesis in vivo 23 3.6 Effect of β4GalNAc-T3 on tumor angiogenesis in vitro 24 3.7 β4GalNAc-T3 promoted cell growth in vitro 24 3.8 β4GalNAc-T3 induced ERK1/2 MAP kinase signaling pathway 25 3.9 The effect of β4GalNAc-T3 on cell growth was knock downed with treatment of PD98059 26 3.10 Quantitative RT-PCR for mRNA expression of tumorigenesis related genes on β4GalNAc-T3 transfectants 27 Chapter 4 DISCUSSION 29 4.1 β4GalNAc-T3 may interfere in the cytoskeleton dynamics and cause the actins to redistribution 29 4.2 Angiogenesis may still provide oxygen and nutrients to facilitate β4GalNAc-T3-promoted tumor growth in vivo 30 4.3 E-cadherin, β-catenin, MMPs and TIMPs may involve in β4GalNAc-T3-promoted tumor cell growth 31 4.4 β4GalNAc-T3 may promte cell growth by the crosstalk of Wnt/ 38 β-catenin signaling and ERK1/2 MAPK pathway 38 Chapter 5 TABELS 42 Table 1. Phylogenetic tree of the β4-glycosyltransferse family 42 Table 2. Primers used in RT-PCR and their genes 43 Chapter 6 FIGURES 44 Figure 1. Nucleotide and amino acid sequences, genomic structure of β4GalNAc-T3 and the construct of pcDNA3.1(+)/β4GalNAc-T3 44 Figure 2. RT-PCR analysis of β4GalNAc-T3 mRNA expression 46 Figure 3. Morphological observation for 24 hour by phase-contrast microscope in mock and β4GalNAc-T3 stable clones. 48 Figure 4. The immunocytochemical pattern of CD29, FAK [pY397], actins and FAK in mock and β4GalNAc-T3 stable clones. 50 Figure 5. Tumor growth in SCID and NOD-SCID mice. 52 Figure 6. Gross appearance of tumor xenografts 54 Figure 7. Effect of β4GalNAc-T3 on angiogenesis was measured by tumor microvessel density using anti-CD31/PECAM-1 monoclonal antibody staining. 56 Figure 8. Morphology of primary cultures of human endothelial cells (HUVECs) from human umbilical cords vein. 58 Figure 9. Endothelial cell purity was measured by flow cytometric analysis. 60 Figure 10. Effect of conditioned media obtained from mock and β4GalNAc-T3 transfected cellson HUVEC cell proliferation by MTT assay. 62 Figure 11. Effect of β4GalNAc-T3 gene on HCT116 cells proliferation by MTT assay 64 Figure 12. Effect of β4GalNAc-T3 gene on HCT116 cell proliferation by Trypan blue exclusion assay 66 Figure 13. Western blot analysis of phospho-p42ERK/p44ERK in total cell lysate of HCT116 transfectant cells. 68 Figure 14. Western blot analysis of treatment with PD98059 on phospho-p42ERK/p44ERK expression in total cell lysate of HCT116 transfectant cells. 70 Figure 15. MTT assay to examine the effect of PD98059 on cell proliferation rate of β4GalNAc-T3 stable clone. 72 Figure 16. Quantitative RT-PCR for mRNA expression of tumorigenesis related genes on β4GalNAc-T3 transfectants 74 Chapter 7 REFERENCE 76 | |
dc.language.iso | en | |
dc.title | β1,4-N-acetylgalactosaminyltransferase-III在大腸癌細胞中扮演的角色 | zh_TW |
dc.title | The role of β1,4-N-acetylgalactosaminyltransferase-III in colon cancer cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李財坤,李明學 | |
dc.subject.keyword | β1,4-N-acetylgalactosaminyltransferase-Ⅲ,HCT116大腸癌細胞株,血管新生,細胞生長,ERK1/2 MAP 激酶,β-catenin, | zh_TW |
dc.subject.keyword | β1,4-N-acetylgalactosaminyltransferase-Ⅲ,HCT116 colon cancer cells,Angiogenesis,cell growth,ERK1/2 MAP kinase,β-catenin, | en |
dc.relation.page | 84 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-09 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。