Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭瑞祥,蔣明晃
dc.contributor.authorTzu-Yi Linen
dc.contributor.author林姿依zh_TW
dc.date.accessioned2021-06-08T06:10:40Z-
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-09
dc.identifier.citation中文部分:
1. 王誌瑋, “使用模糊分類演算法及遺傳基因演算法於核磁共振造影影像分割之研究”, 私立大葉大學工業工程研究所碩士論文,2001
2. 林志隆, “利用c-Fuzzy Means在服務性網站上的資料探勘”, 國立清華大學工業工程與工程管理學系碩士論文,2001
3. 黃明顯, “建構汽車售後服務零件供應鏈創新策略之方法與實證研究 - 以和泰汽車為例 -”, 私立東吳大學企業管理系碩士在職專班碩士論文, 2005
4. 葉恩賜, “小汽車產業售服零件供應鏈改善之研究”, 國立交通大學管理學院碩士在職專班碩士論文, 2005
5. 賴榮欽, “預測利潤之決策支援系統的應用研究-以汽車零件業個案公司為例”, 國立成功大學管理學院在職專班碩士論文, 2002
6. 鍾武勳, “應用Fuzzy c-Means演算法之物流中心位址決策模式研究”, 國立中央大學工業管理研究所碩士在職專班碩士論文,2005
7. 龔惠盈, “資料採礦在產品庫存價值分析之研究---以A公司為例”, 私立元智大學工業工程與管理學研究所碩士論文,2005
英文部分:
1. Anderberg, M. R., “Cluster Analysis for Applications,” Academic Press, 8, 1, ﹙1973﹚, 2-7.
2. Ankerst, M., Breunig, M., Kriegel, H. P., and Sander, J., “OPTICS: Ordering points to identify the clustering structure,” In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data ﹙SIGMOD’99﹚, Philadelphia, PA, June ﹙1999﹚, 49-60.
3. Arminger, G., Enache, D., and Bonne, T., “Analyzing credit risk data: A comparison of logistic discrimination classification tree analysis and feedforward networks.” Computational Statistics, 12, ﹙1997﹚, 293-310.
4. Berry, M., and Linoff, G., Data Mining Techniques: for Marketing, Sales, and Customer Support. John Wiley & Sons, ﹙1997﹚.
5. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, ﹙1981﹚.
6. Chae, Y. M., Ho, S. H., Cho, K. W., Lee, D. H., and Ji, S. H., “Data mining approach to policy analysis in a health insurance domain.” International Journal of Medical Informatics, 62, ﹙2001﹚, 103-111.
7. Craven, M. W., and Shavlik, J. W., “Using neural networks for data mining.” Future Generation Computer System, 13, ﹙1997﹚, 211-229.
8. Davids, M.,“How to Avoid the 10 Biggest Mistake in CRM,” Journal of Business Strategy, 20, 6, ﹙1999﹚, 22~26.
9. Dunn, J.C., “Well-separated clusters and the optimal fuzzy partitions,” Journal of Cybernetics, 4, ﹙1974﹚, 95-104.
10. Dutta, S., Shekhar, S., and Wong, W. Y., “Decision support in non-conservative domains: Generalization with neural networks.” Decision Support Systems, 11,﹙1994﹚, 527-544.
11. Ester, M., Kriegel, H. P., Sander, J., and Xu, X., “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining ﹙KDD’96﹚, Portland, OR, Aug. ﹙1996﹚, 226-231.
12. Estivill-Castro, V., and Lee, I., “AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram.” In Proc. 9th Int. Spatial Data Handling ﹙SDH2000﹚, Beijing, China, Aug. ﹙2000﹚, 10-12.
13. Estivill-Castro, V., and Lee, I., “AUTOCLUST: Automatic Clustering via Boundary Extraction for Massive Point Data Sets,” In Proc. 5th Int. Conf. eo-Computation, University of Greenwich, Kent, UK. Aug. ﹙2000﹚, 23-25.
14. Fayyad , U.M., “Data Mining and Knowledge Discovery: Making Sense Out of Data,” IEEE Expert, 11, 10, ﹙1996﹚, 20-25.
15. Guha, S., Rastogi, R., and Shim, K., “CURE: An efficient clustering algorithm for large databases.” In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data ﹙SIGMOD’98﹚, Seattle, WA, June ﹙1998﹚, 73-84.
16. Guha, S., Rastogi, R., and Shim, K., “ROCK: A Robust Clustering Algorithm For Categorical Attribute.” In Proc. 1999 Int. Conf. Data Engineering ﹙ICDE’99﹚, ﹙1999﹚, 512-521.
17. Han, J., and Kamber, M., Data Mining : Concepts and Techniques. San Francisco : Morgan Kaufmann Publishers, ﹙2001﹚.
18. Kahan, R., “Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initiatives,” Journal of Consumer Marketing, 15, 5, ﹙1998﹚, 491-493.
19. Kalakota, R., and Robinson, M., e-Business :Roadmap for Success. Addison Wesley Longman, Inc. , ﹙1999﹚.
20. Karypis, G., Han, E. H., and Vipin. K., “CHAMELEON: Hierarchical Clustering Using Dynamic Modeling,” COMPUTER, 32, ﹙1999﹚, 68-75.
21. Kaufman, L., and Rousseeuw, P. J., Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, ﹙1990﹚ .
22. MacQueen, J. B., “Some Methods for Classification and Analysis of Multivariate Observation,” In Proc. 5th Berkeley Symp. Math. Statistics, ﹙1967﹚, 281-297.
23. Miglautsch, J., “Thoughts on RFM Scoring,” Journal of Database Marketing, 8, 1. ﹙2000﹚, 35-43.
24. Ng, R. and Han, J., “Efficient and Effective Clustering Method for Spatial Data Mining.” In Proc. 1994 Int. Conf. Very Large Databases ﹙VLDB’94﹚, Santiago, Chile, Sept. ﹙1994﹚, 144-155.
25. Peppers, D., and Rogers, M., The one to one future: building relationship one customer at a time. Doubleday, 1993.
26. Roiger, R., and Geatz, M., Data Mining a Tutorial-based Primer. New York :Addison Wesley, 2002.
27. Sheikholeslami, G., Chatterjee, S., and Zhang. A., “WaveCluster:A multi-resolution clustering approach for very large spatial databases,” In Proc. 1998 Int. Conf. Very Large Databases ﹙VLDB’98﹚, New York, Aug. ﹙1998﹚, 428-439.
28. Stone, B., Successful direct marketing methods. 4th ed., NTC Business Books, 1989.
29. Swift, R., Accelerating Customer Relationships: Using CRM and Relationship Technologies. Prentice Hall PTR, 2000.
30. Two Crows Corporation, “Data Mining ’99: Technology Report.” 1999.
31. Wang, S. C., and Huang, P. H., “A Fuzzy Method for Power System Model Reduction.” Proceedings of the IEEE International Conference on Fuzzy Systems, 2, ﹙2004﹚, 891-894.
32. Wang, W., Yang, J., and Muntz, R., “STING: A Statistical Information grid Approach to Spatial Data Mining.” In Proc. 1997 Int. Conf. Very Large Data Bases﹙VLDB’97﹚, Athens, Greece, Aug. ﹙1997﹚, 186-195.
33. Weiss, S. M., and Indurkhya, N., Predictive Data Mining: A Practical Guide. CA: Morgan Kaufmann, 1998.
34. Xie, X. L., and Beni, G., “A validity measure for fuzzy clustering.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 8, ﹙1991﹚, 814~847.
35. Yang, J. F., Hao, S. S., and Chung, P.C., “Color Object Segmentation Algorithm Using Fuzzy C-means with Eigen-subspace Projection.” Signal Processing, 82, ﹙2002﹚, 461 - 472.
36. Zadeh, L. A., “Fuzzy sets.” Information control, 8, 3, ﹙1965﹚, 338-353.
37. Zhang, T., Ramakrishnan, R., and Livny M., “BIRCH: An Efficient Data Clustering Method for Very Large Databases.” In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data ﹙SIGMOD’96﹚, ﹙1996﹚, 103-114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25367-
dc.description.abstract對大多數的企業來說,顧客關係管理以成為企業在市場上的競爭利器,若企業能夠對顧客的交易特性進行區隔,進而提供合適之服務與產品,將可提高資源配置的效率及行銷策略的有效性。但企業常用的RFM模型與其他硬式分群法如K-means對於多變性、不確定性,或是多重性顧客資料,皆無法顯現良好分群效果,因此本研究主要將RFM變數引入Fuzzy C-means分群演算法中,在資料分群過程中,保留資料與資料間的不確定性,最後利用分群測量性指標評估最佳分群數,建構出符合多變性、多重性顧客特性的分群模型,並將顧客歸納於隸屬群體中,提供完整分群分析之框架。
本研究利用國內一汽車總代理公司所提供的汽車零件服務作為個案研究,並分析各群體之交易特性,共可分為三個群體,參考三個群體的基本統計變數建立顧客分類規則,作為企業對新客戶快速分類之參考依據,最後依據各群交易特性,進行經營管理策略上之建議,可有效提升顧客滿意度與降低庫存之壓力,並使得總代理與經銷商服務廠均達到雙贏的地步。
zh_TW
dc.description.abstractA lot of companies have implemented Customer Relationship Management as a competitive weapon. It will raise the efficiency of internal resources allocation and the efficacy of marketing strategy, if companies can provide customerized service or products to customers who are clustered according to selling record. Common used clustering methods such as RFM model or other hard clustering methods ﹙eg. K-means﹚ produce unreliable result when processing data is uncertain or Multiple. Therefore, this study put RFM variables into Fuzzy C-means algorithm which will retain data uncertainty during clustering process. Finally, clustering number validity is combined to this clustering model and established a complete clustering framework.
To validate the proposed model, field data from a local automobile general agent is collected. 136 customers are clustered into 3 clusters. The statistic description from three clusters is analyzed and referred to classification rules for new customers. Suggested managerial strategies for each cluster are effective to raise customer satisfaction and lower inventory.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:10:40Z (GMT). No. of bitstreams: 1
ntu-96-R94741049-1.pdf: 609361 bytes, checksum: 15d0fd8069af9d1b674b1dfb71382130 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究架構 3
1.4 論文架構 4
第二章 文獻探討 6
2.1 顧客關係管理﹙Customer Relationship Management﹚ 6
2.2 資料採礦﹙Data Mining﹚ 8
2.3 分群演算法分類與比較 10
2.4 RFM模型 15
2.5 汽車零件服務的特性 17
2.6 小結 17
第三章 研究方法 19
3.1. RFM模式 20
3.2. 剔除outlier 20
3.3. 資料正規化 21
3.4. 模糊C-平均法﹙Fuzzy C-Means Method﹚ 21
3.5. 分群測量性指標判定 24
3.6. 最佳分群數與信度判定 25
3.7. 歸納顧客隸屬群體 26
第四章 台灣汽車售後零件個案公司分析 27
4.1 個案公司介紹 27
4.2 資料描述 28
4.3 顧客分群分析 32
4.4 不同分群法效果比較 43
第五章 結論與未來研究方向 46
5.1 本研究結論 46
5.2 研究貢獻 46
5.3 研究限制 47
5.4 未來研究方向 48
參考文獻 49
附錄一 136位顧客資料-未正規化 54
附錄二 136位顧客資料-已正規化 55
附錄三 歸納136位顧客隸屬群體 56
附錄四 MATLAB 程式檔 57
dc.language.isozh-TW
dc.subject資料探勘zh_TW
dc.subjectFuzzyC-Meanszh_TW
dc.subjectRFM模型zh_TW
dc.subject顧客關係管理zh_TW
dc.subjectCRMen
dc.subjectData miningen
dc.subjectFuzzy C-Meansen
dc.subjectRFM modelen
dc.title建立適合顧客關係管理之模糊分群模型-以汽車維修服務為例zh_TW
dc.titleA Fuzzy Clustering-Model Established for Customer Relationship Management in Auto Repair Serviceen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor王志軒
dc.contributor.oralexamcommittee郭人介,任立中
dc.subject.keywordFuzzyC-Means,RFM模型,顧客關係管理,資料探勘,zh_TW
dc.subject.keywordFuzzy C-Means,RFM model,CRM,Data mining,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2007-07-10
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
595.08 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved